Spaces:
Runtime error
Runtime error
Commit
·
7a96a6f
1
Parent(s):
a659f52
Upload 2 files
Browse files- app.py +103 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.vectorstores.faiss import FAISS
|
8 |
+
from langchain.docstore.document import Document
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from langchain.llms import OpenAI
|
12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
import openai
|
14 |
+
|
15 |
+
def proper_query(query):
|
16 |
+
prompt = f"El siguiente texto es una pregunta en español: {query}\n\n¿Cómo debería ser la pregunta para que sea correcta en español?\nPregunta corregida:"
|
17 |
+
response = openai.Completion.create(engine="text-davinci-003", prompt=prompt, max_tokens=1000, temperature=0.2)
|
18 |
+
return response.choices[0].text
|
19 |
+
|
20 |
+
def extract_text_from_pdf(file_path, splitter = "\n\n"):
|
21 |
+
with open(file_path, 'rb') as file:
|
22 |
+
pdf = PyPDF2.PdfReader(file)
|
23 |
+
text = ''
|
24 |
+
for page in pdf.pages:
|
25 |
+
text += page.extract_text()
|
26 |
+
chunks = text.split(splitter)
|
27 |
+
chunks = [splitter + chunk for chunk in chunks[1:]]
|
28 |
+
#create a csv file with the chunks in one column
|
29 |
+
#df = pd.DataFrame(chunks, columns=['text'])
|
30 |
+
#write to csv
|
31 |
+
#df.to_csv(file_path[:-4]+'.csv', index=False)
|
32 |
+
return chunks
|
33 |
+
|
34 |
+
embeddings = OpenAIEmbeddings()
|
35 |
+
text = extract_text_from_pdf('transito-dgo.pdf','ARTÍCULO')
|
36 |
+
|
37 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
38 |
+
# Set a really small chunk size, just to show.
|
39 |
+
chunk_size = 500,
|
40 |
+
chunk_overlap = 0,
|
41 |
+
length_function = len,
|
42 |
+
)
|
43 |
+
|
44 |
+
texts = text_splitter.split_text(text)
|
45 |
+
|
46 |
+
docsearch = FAISS.from_texts(texts, embeddings)
|
47 |
+
|
48 |
+
def asesor_transito(query):
|
49 |
+
query = proper_query(query)
|
50 |
+
docs = docsearch.similarity_search(query)
|
51 |
+
refine_prompt_template = (
|
52 |
+
"The original question is as follows: {question}\n"
|
53 |
+
"We have provided an existing answer: {existing_answer}\n"
|
54 |
+
"You have the opportunity to refine the existing answer,"
|
55 |
+
"only if needed, exclusively with the context below.\n"
|
56 |
+
"------------\n"
|
57 |
+
"{context_str}\n"
|
58 |
+
"------------\n"
|
59 |
+
"If that context is not helpful to answer the question, then omit it.\n"
|
60 |
+
"Shorten the answer if possible.\n"
|
61 |
+
"Reply in the same language as the question.\n"
|
62 |
+
"If the context is not helpful to answer the question or if it is not a question, then you will refuse to answer.\n"
|
63 |
+
"Answer:"
|
64 |
+
)
|
65 |
+
refine_prompt = PromptTemplate(
|
66 |
+
input_variables=["question", "existing_answer", "context_str"],
|
67 |
+
template=refine_prompt_template,
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
initial_qa_template = (
|
72 |
+
"Context information is below. \n"
|
73 |
+
"---------------------\n"
|
74 |
+
"{context_str}"
|
75 |
+
"\n---------------------\n"
|
76 |
+
"Given the context information and not prior knowledge, "
|
77 |
+
"answer the question: {question}\n"
|
78 |
+
"If the context is not helpful to answer the question or if it is not a question, then you will refuse to answer.\n"
|
79 |
+
)
|
80 |
+
initial_qa_prompt = PromptTemplate(
|
81 |
+
input_variables=["context_str", "question"], template=initial_qa_template
|
82 |
+
)
|
83 |
+
chain = load_qa_chain(OpenAI(temperature=0), chain_type="refine", return_refine_steps=False,
|
84 |
+
question_prompt=initial_qa_prompt, refine_prompt=refine_prompt)
|
85 |
+
ans = chain({"input_documents": docs, "question": query}, return_only_outputs=True)['output_text']
|
86 |
+
return ans
|
87 |
+
|
88 |
+
demo = gr.Interface(
|
89 |
+
fn=asesor_transito,
|
90 |
+
inputs=[
|
91 |
+
gr.Textbox(label="Hola soy tu asesor personal de tránsito de Durango, ¿cuál es tu pregunta? \nHi, I am your Durango transit law personal assistant, ask me anything about Mexico City's transit law in any language.", lines=3,),
|
92 |
+
],
|
93 |
+
outputs=[gr.Textbox(label="Respuesta: \nAnswer: ")],
|
94 |
+
title="Asesor de Reglamento de Tránsito Durango",
|
95 |
+
examples=[
|
96 |
+
["cuál es la multa por no llevar casco?"],
|
97 |
+
["qué pasa si no tengo licencia de conducir?"],
|
98 |
+
["What would happen if I drove under the influence of alcohol?"]
|
99 |
+
],
|
100 |
+
)
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai==0.25.0
|
2 |
+
matplotlib==3.6.2
|
3 |
+
numpy==1.23.5
|
4 |
+
PyPDF2==3.0.1
|
5 |
+
langchain==0.0.68
|
6 |
+
zipfile36==0.1.3
|
7 |
+
faiss-cpu==1.7.3
|