Spaces:
Runtime error
Runtime error
Commit
·
b9d8fd8
1
Parent(s):
ae45f5d
Update app.py flow
Browse files
app.py
CHANGED
@@ -15,51 +15,26 @@ def get_documentation(query, platform):
|
|
15 |
|
16 |
if platform == "Salesforce Marketing Cloud Intelligence":
|
17 |
df = pd.read_csv("(sfmci)doc_embeddings.csv")
|
18 |
-
df.ada_search = df.ada_search.apply(
|
19 |
-
lambda x: np.array(x[1:-1].split(','), dtype=np.float32))
|
20 |
-
df["similarities"] = df.ada_search.apply(
|
21 |
-
lambda x: cosine_similarity(x, embedding))
|
22 |
-
df = df.sort_values("similarities", ascending=False).reset_index()
|
23 |
-
titles = df['title']
|
24 |
-
contents = df['body']
|
25 |
-
links = df['link']
|
26 |
-
res = []
|
27 |
-
for i in range(3):
|
28 |
-
res.append("Title: " + titles[i] + "\n\Content: " +
|
29 |
-
contents[i] + "\n\nURL: " + links[i])
|
30 |
-
return res[0], res[1], res[2]
|
31 |
|
32 |
elif platform == "Salesforce Marketing Cloud CDP":
|
33 |
df = pd.read_csv("(sfmcdp)doc_embeddings.csv")
|
34 |
-
df.ada_search = df.ada_search.apply(
|
35 |
-
lambda x: np.array(x[1:-1].split(','), dtype=np.float32))
|
36 |
-
df["similarities"] = df.ada_search.apply(
|
37 |
-
lambda x: cosine_similarity(x, embedding))
|
38 |
-
df = df.sort_values("similarities", ascending=False).reset_index()
|
39 |
-
titles = df['title']
|
40 |
-
contents = df['body']
|
41 |
-
links = df['link']
|
42 |
-
res = []
|
43 |
-
for i in range(3):
|
44 |
-
res.append("Title: " + titles[i] + "\n\Content: " +
|
45 |
-
contents[i] + "\n\nURL: " + links[i])
|
46 |
-
return res[0], res[1], res[2]
|
47 |
|
48 |
elif platform == "Salesforce Marketing Cloud Personalization":
|
49 |
df = pd.read_csv("(sfmcp)doc_embeddings.csv")
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
|
65 |
demo = gr.Interface(
|
|
|
15 |
|
16 |
if platform == "Salesforce Marketing Cloud Intelligence":
|
17 |
df = pd.read_csv("(sfmci)doc_embeddings.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
elif platform == "Salesforce Marketing Cloud CDP":
|
20 |
df = pd.read_csv("(sfmcdp)doc_embeddings.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
elif platform == "Salesforce Marketing Cloud Personalization":
|
23 |
df = pd.read_csv("(sfmcp)doc_embeddings.csv")
|
24 |
+
|
25 |
+
df.ada_search = df.ada_search.apply(
|
26 |
+
lambda x: np.array(x[1:-1].split(','), dtype=np.float32))
|
27 |
+
df["similarities"] = df.ada_search.apply(
|
28 |
+
lambda x: cosine_similarity(x, embedding))
|
29 |
+
df = df.sort_values("similarities", ascending=False).reset_index()
|
30 |
+
titles = df['title']
|
31 |
+
contents = df['body']
|
32 |
+
links = df['link']
|
33 |
+
res = []
|
34 |
+
for i in range(3):
|
35 |
+
res.append("Title: " + titles[i] + "\n\nContent: " +
|
36 |
+
contents[i] + "\n\nURL: " + links[i])
|
37 |
+
return res[0], res[1], res[2]
|
38 |
|
39 |
|
40 |
demo = gr.Interface(
|