Create score_model.py
Browse files- score_model.py +19 -0
score_model.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, util
|
2 |
+
|
3 |
+
MODELS = {
|
4 |
+
"all-MiniLM-L6-v2": SentenceTransformer("all-MiniLM-L6-v2"),
|
5 |
+
"multi-qa-MiniLM-L6-cos-v1": SentenceTransformer("multi-qa-MiniLM-L6-cos-v1"),
|
6 |
+
"paraphrase-MiniLM-L3-v2": SentenceTransformer("paraphrase-MiniLM-L3-v2"),
|
7 |
+
"all-mpnet-base-v2": SentenceTransformer("all-mpnet-base-v2"),
|
8 |
+
"distilbert-base-nli-mean-tokens": SentenceTransformer("distilbert-base-nli-mean-tokens"),
|
9 |
+
}
|
10 |
+
|
11 |
+
def score_fit(text: str, goal: str, method: str) -> dict:
|
12 |
+
results = {}
|
13 |
+
for name, model in MODELS.items():
|
14 |
+
emb1 = model.encode(text, convert_to_tensor=True)
|
15 |
+
emb2 = model.encode(goal, convert_to_tensor=True)
|
16 |
+
cos = util.cos_sim(emb1, emb2).item()
|
17 |
+
score = max(0, min(100, int((cos + 1) * 50)))
|
18 |
+
results[name] = score
|
19 |
+
return results
|