from sentence_transformers import SentenceTransformer, util MODELS = { "all-MiniLM-L6-v2": SentenceTransformer("all-MiniLM-L6-v2"), "multi-qa-MiniLM-L6-cos-v1": SentenceTransformer("multi-qa-MiniLM-L6-cos-v1"), "paraphrase-MiniLM-L3-v2": SentenceTransformer("paraphrase-MiniLM-L3-v2"), "all-mpnet-base-v2": SentenceTransformer("all-mpnet-base-v2"), "distilbert-base-nli-mean-tokens": SentenceTransformer("distilbert-base-nli-mean-tokens"), } def score_fit(text: str, goal: str, method: str) -> dict: results = {} for name, model in MODELS.items(): emb1 = model.encode(text, convert_to_tensor=True) emb2 = model.encode(goal, convert_to_tensor=True) cos = util.cos_sim(emb1, emb2).item() score = max(0, min(100, int((cos + 1) * 50))) results[name] = score return results