YannisK commited on
Commit
0cd5efd
·
1 Parent(s): 082f0c5
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -15,6 +15,7 @@ import fire_network
15
  import numpy as np
16
 
17
  from PIL import Image
 
18
 
19
  # Possible Scales for multiscale inference
20
  scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
@@ -37,10 +38,11 @@ transform = transforms.Compose([
37
  # which sf
38
  sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
39
 
40
-
41
  col = plt.get_cmap('tab10')
42
 
43
  def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
 
 
44
 
45
  im1_tensor = transform(im1).unsqueeze(0)
46
  im2_tensor = transform(im2).unsqueeze(0)
@@ -82,11 +84,13 @@ def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
82
 
83
  fin_img = []
84
  img1rsz = np.copy(im1)
 
85
  for j, att in enumerate(all_att_bin1):
86
  # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_NEAREST)
87
  # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
88
  # att = cv2.resize(att, imgz[i].shape[:2][::-1])
89
- att = att.resize(im1.shape)
 
90
  mask2d = zip(*np.where(att==255))
91
  for m,n in mask2d:
92
  col_ = col.colors[j] if j < 7 else col.colors[j+1]
@@ -96,7 +100,6 @@ def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
96
  fin_img.append(img1rsz)
97
 
98
  img2rsz = np.copy(im2)
99
- print(img2rsz.size)
100
  for j, att in enumerate(all_att_bin2):
101
  # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_NEAREST)
102
  # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
 
15
  import numpy as np
16
 
17
  from PIL import Image
18
+ from skimage.transform import resize
19
 
20
  # Possible Scales for multiscale inference
21
  scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
 
38
  # which sf
39
  sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
40
 
 
41
  col = plt.get_cmap('tab10')
42
 
43
  def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
44
+ print(im1.size)
45
+ return
46
 
47
  im1_tensor = transform(im1).unsqueeze(0)
48
  im2_tensor = transform(im2).unsqueeze(0)
 
84
 
85
  fin_img = []
86
  img1rsz = np.copy(im1)
87
+ print(img1rsz.size)
88
  for j, att in enumerate(all_att_bin1):
89
  # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_NEAREST)
90
  # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
91
  # att = cv2.resize(att, imgz[i].shape[:2][::-1])
92
+ att = att.resize(shape)
93
+ # att = resize(att, im1.size)
94
  mask2d = zip(*np.where(att==255))
95
  for m,n in mask2d:
96
  col_ = col.colors[j] if j < 7 else col.colors[j+1]
 
100
  fin_img.append(img1rsz)
101
 
102
  img2rsz = np.copy(im2)
 
103
  for j, att in enumerate(all_att_bin2):
104
  # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_NEAREST)
105
  # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)