Spaces:
Build error
Build error
temp
Browse files
app.py
CHANGED
|
@@ -2,12 +2,18 @@ import gradio as gr
|
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
from torchvision import transforms
|
| 8 |
|
| 9 |
import fire_network
|
| 10 |
|
|
|
|
|
|
|
| 11 |
# Possible Scales for multiscale inference
|
| 12 |
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
|
| 13 |
|
|
@@ -42,23 +48,75 @@ def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
|
|
| 42 |
|
| 43 |
# extract features
|
| 44 |
with torch.no_grad():
|
| 45 |
-
output1 = net.get_superfeatures(im1_tensor.to(device), scales=
|
| 46 |
-
feats1 = output1[0]
|
| 47 |
-
attns1 = output1[1]
|
| 48 |
-
strenghts1 = output1[2]
|
| 49 |
-
|
| 50 |
-
output2 = net.get_superfeatures(im2_tensor.to(device), scales=
|
| 51 |
-
feats2 = output2[0]
|
| 52 |
-
attns2 = output2[1]
|
| 53 |
-
strenghts2 = output2[2]
|
| 54 |
-
|
| 55 |
-
print(
|
| 56 |
-
|
| 57 |
-
print(
|
| 58 |
-
|
| 59 |
-
#
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
# GRADIO APP
|
|
|
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
+
from matplotlib import cm
|
| 8 |
+
from matplotlib import colors
|
| 9 |
+
from mpl_toolkits.axes_grid1 import ImageGrid
|
| 10 |
|
| 11 |
from torchvision import transforms
|
| 12 |
|
| 13 |
import fire_network
|
| 14 |
|
| 15 |
+
from PIL import Image
|
| 16 |
+
|
| 17 |
# Possible Scales for multiscale inference
|
| 18 |
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
|
| 19 |
|
|
|
|
| 48 |
|
| 49 |
# extract features
|
| 50 |
with torch.no_grad():
|
| 51 |
+
output1 = net.get_superfeatures(im1_tensor.to(device), scales=[scale_id])
|
| 52 |
+
feats1 = output1[0][0]
|
| 53 |
+
attns1 = output1[1][0]
|
| 54 |
+
strenghts1 = output1[2][0]
|
| 55 |
+
|
| 56 |
+
output2 = net.get_superfeatures(im2_tensor.to(device), scales=[scale_id])
|
| 57 |
+
feats2 = output2[0][0]
|
| 58 |
+
attns2 = output2[1][0]
|
| 59 |
+
strenghts2 = output2[2][0]
|
| 60 |
+
|
| 61 |
+
print(feats1.shape, feats2.shape)
|
| 62 |
+
print(attns1.shape, attns2.shape)
|
| 63 |
+
print(strenghts1.shape, strenghts2.shape)
|
| 64 |
+
|
| 65 |
+
# Store all binary SF att maps to show them all at once in the end
|
| 66 |
+
all_att_bin1 = defaultdict(list)
|
| 67 |
+
all_att_bin2 = defaultdict(list)
|
| 68 |
+
for n, i in enumerate(sf_idx_):
|
| 69 |
+
# all_atts[n].append(attn[j][scale_id][0,i,:,:].numpy())
|
| 70 |
+
att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
|
| 71 |
+
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
|
| 72 |
+
att_heat_bin = np.where(att_heat>threshold, 255, 0)
|
| 73 |
+
all_att_bin1.append(att_heat_bin)
|
| 74 |
+
|
| 75 |
+
att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
|
| 76 |
+
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
|
| 77 |
+
att_heat_bin = np.where(att_heat>threshold, 255, 0)
|
| 78 |
+
all_att_bin2.append(att_heat_bin)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
fin_img = []
|
| 82 |
+
img1rsz = np.copy(im1)
|
| 83 |
+
for j, att in enumerate(all_att_bin1):
|
| 84 |
+
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_NEAREST)
|
| 85 |
+
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
|
| 86 |
+
# att = cv2.resize(att, imgz[i].shape[:2][::-1])
|
| 87 |
+
att = att.resize(im1.size)
|
| 88 |
+
mask2d = zip(*np.where(att==255))
|
| 89 |
+
for m,n in mask2d:
|
| 90 |
+
col_ = col.colors[j] if j < 7 else col.colors[j+1]
|
| 91 |
+
if j == 0: col_ = col.colors[9]
|
| 92 |
+
col_ = 255*np.array(colors.to_rgba(col_))[:3]
|
| 93 |
+
img1rsz[m,n, :] = col_[::-1]
|
| 94 |
+
fin_img.append(img1rsz)
|
| 95 |
+
|
| 96 |
+
img2rsz = np.copy(im2)
|
| 97 |
+
for j, att in enumerate(all_att_bin2):
|
| 98 |
+
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_NEAREST)
|
| 99 |
+
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
|
| 100 |
+
# att = cv2.resize(att, imgz[i].shape[:2][::-1])
|
| 101 |
+
att = att.resize(im2.size)
|
| 102 |
+
mask2d = zip(*np.where(att==255))
|
| 103 |
+
for m,n in mask2d:
|
| 104 |
+
col_ = col.colors[j] if j < 7 else col.colors[j+1]
|
| 105 |
+
if j == 0: col_ = col.colors[9]
|
| 106 |
+
col_ = 255*np.array(colors.to_rgba(col_))[:3]
|
| 107 |
+
img2rsz[m,n, :] = col_[::-1]
|
| 108 |
+
fin_img.append(img2rsz)
|
| 109 |
+
|
| 110 |
|
| 111 |
+
fig = plt.figure(figsize=(12,25))
|
| 112 |
+
grid = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.1)
|
| 113 |
+
for ax, img in zip(grid, fin_img):
|
| 114 |
+
ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
| 115 |
+
ax.axis('scaled')
|
| 116 |
+
ax.axis('off')
|
| 117 |
+
plt.tight_layout()
|
| 118 |
+
fig.suptitle("Matching SFs", fontsize=16)
|
| 119 |
+
return fig
|
| 120 |
|
| 121 |
|
| 122 |
# GRADIO APP
|