File size: 26,419 Bytes
8dcb829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#!/usr/bin/env python3
"""
Optimized TTS Data Export to Hugging Face
This script exports approved TTS annotations directly from the database to Hugging Face.
Features:
- Local caching for audio files to avoid re-downloading
- Batch processing to handle large datasets without memory issues
- Resume capability for interrupted uploads
- Better error handling and retry mechanisms
- HuggingFace best practices for large dataset uploads
"""

import os
import sys
import json
import hashlib
import time
import shutil
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Optional, Tuple
import pymysql
import requests
import pandas as pd
from huggingface_hub import HfApi, login
from datasets import Dataset, Audio, Features, Value
import librosa
import numpy as np
from tqdm import tqdm

# Configuration
TARGET_REPO = "navidved/approved-tts-dataset"
SPEAKER_NAME = "ali_bandari"
BATCH_SIZE = 100  # Process annotations in batches
CACHE_DIR = "./audio_cache"  # Local cache directory
TEMP_DIR = "./temp_dataset"  # Temporary directory for dataset preparation
MAX_WORKERS = 4  # Concurrent downloads
MAX_RETRIES = 3  # Max retries for failed downloads

# Memory optimization settings
OPTIMIZE_MEMORY = True  # Enable memory optimizations
TARGET_SAMPLE_RATE = 22050  # Reduce sample rate to save memory (None to keep original)
AUDIO_DTYPE = 'int16'  # Use int16 instead of float32 to halve memory usage
USE_GENERATOR = True  # Use generator-based dataset creation (recommended for large datasets)

# Database configuration (edit these if needed)
DB_CONFIG = {
    'host': 'annotation-db.apps.teh2.abrhapaas.com',
    'port': 32107,
    'user': os.getenv('DB_USER', 'navid'),
    'password': os.getenv('DB_PASSWORD', 'ZUJSK!1V!PF4ZEnIaylX'),
    'database': os.getenv('DB_NAME', 'tts'),
    'charset': 'utf8mb4'
}

# Audio server base URL
AUDIO_BASE_URL = "http://hubbit.ir/hf_dataset/tts"

class CacheManager:
    """Handles local caching of audio files"""
    
    def __init__(self, cache_dir: str):
        self.cache_dir = Path(cache_dir)
        self.cache_dir.mkdir(exist_ok=True)
        self.index_file = self.cache_dir / "cache_index.json"
        self.index = self._load_index()
    
    def _load_index(self) -> Dict:
        """Load cache index from disk"""
        if self.index_file.exists():
            try:
                with open(self.index_file, 'r') as f:
                    return json.load(f)
            except:
                return {}
        return {}
    
    def _save_index(self):
        """Save cache index to disk"""
        with open(self.index_file, 'w') as f:
            json.dump(self.index, f)
    
    def _get_cache_key(self, filename: str) -> str:
        """Generate cache key for filename"""
        return hashlib.md5(filename.encode()).hexdigest()
    
    def get_cached_file(self, filename: str) -> Optional[Path]:
        """Get cached file path if exists and valid"""
        cache_key = self._get_cache_key(filename)
        if cache_key in self.index:
            cached_path = Path(self.index[cache_key])
            if cached_path.exists():
                return cached_path
            else:
                # Remove invalid entry
                del self.index[cache_key]
                self._save_index()
        return None
    
    def cache_file(self, filename: str, file_data: bytes) -> Path:
        """Cache file data and return path"""
        cache_key = self._get_cache_key(filename)
        # Use original extension if available
        ext = Path(filename).suffix or '.mp3'
        cached_path = self.cache_dir / f"{cache_key}{ext}"
        
        with open(cached_path, 'wb') as f:
            f.write(file_data)
        
        self.index[cache_key] = str(cached_path)
        self._save_index()
        return cached_path


class AudioDownloader:
    """Handles audio downloading with retry logic"""
    
    def __init__(self, base_url: str, cache_manager: CacheManager, max_retries: int = 3):
        self.base_url = base_url
        self.cache_manager = cache_manager
        self.max_retries = max_retries
    
    def download_audio(self, filename: str) -> Optional[Tuple[Path, Dict]]:
        """Download and process audio file, return (path, audio_info)"""
        # Check cache first
        cached_path = self.cache_manager.get_cached_file(filename)
        if cached_path:
            return self._load_audio_info(cached_path, filename)
        
        # Download file
        url = f"{self.base_url}/{filename}"
        
        for attempt in range(self.max_retries):
            try:
                response = requests.get(url, timeout=30)
                response.raise_for_status()
                
                # Cache the file
                cached_path = self.cache_manager.cache_file(filename, response.content)
                return self._load_audio_info(cached_path, filename)
                
            except Exception as e:
                if attempt < self.max_retries - 1:
                    time.sleep(2 ** attempt)  # Exponential backoff
                    continue
                else:
                    print(f"  ❌ Failed to download {filename} after {self.max_retries} attempts: {e}")
                    return None
    
    def _load_audio_info(self, file_path: Path, filename: str) -> Tuple[Path, Dict]:
        """Load audio information and audio data with memory optimization"""
        try:
            # Load audio data with librosa
            sr = TARGET_SAMPLE_RATE if OPTIMIZE_MEMORY else None
            audio_data, sample_rate = librosa.load(str(file_path), sr=sr, mono=True)
            
            # Optimize audio data type for memory efficiency
            if OPTIMIZE_MEMORY and AUDIO_DTYPE == 'int16':
                # Convert float32 to int16 to halve memory usage
                audio_data = (audio_data * 32767).astype(np.int16)
            
            return file_path, {
                'filename': filename,
                'path': str(file_path),
                'audio_array': audio_data,  # Optimized audio array
                'duration': len(audio_data) / sample_rate,
                'sample_rate': sample_rate,
                'channels': 1,
                'dtype': str(audio_data.dtype)
            }
        except Exception as e:
            # Try with soundfile as fallback
            try:
                import soundfile as sf
                audio_data, sample_rate = sf.read(str(file_path))
                if len(audio_data.shape) > 1:
                    audio_data = np.mean(audio_data, axis=1)  # Convert to mono
                
                # Apply sample rate optimization
                if OPTIMIZE_MEMORY and TARGET_SAMPLE_RATE and sample_rate != TARGET_SAMPLE_RATE:
                    import scipy.signal
                    num_samples = int(len(audio_data) * TARGET_SAMPLE_RATE / sample_rate)
                    audio_data = scipy.signal.resample(audio_data, num_samples)
                    sample_rate = TARGET_SAMPLE_RATE
                
                # Optimize data type
                if OPTIMIZE_MEMORY and AUDIO_DTYPE == 'int16':
                    audio_data = (audio_data * 32767).astype(np.int16)
                
                return file_path, {
                    'filename': filename,
                    'path': str(file_path),
                    'audio_array': audio_data,
                    'duration': len(audio_data) / sample_rate,
                    'sample_rate': sample_rate,
                    'channels': 1,
                    'dtype': str(audio_data.dtype)
                }
            except ImportError:
                print(f"  ❌ Error loading audio {filename}: {e}")
                return None


class BatchProcessor:
    """Processes annotations in batches to avoid memory issues"""
    
    def __init__(self, downloader: AudioDownloader, temp_dir: str, batch_size: int = 100):
        self.downloader = downloader
        self.temp_dir = Path(temp_dir)
        self.temp_dir.mkdir(exist_ok=True)
        self.batch_size = batch_size
    
    def process_batch(self, annotations: List[Dict], batch_id: int) -> Optional[Path]:
        """Process a batch of annotations and save to parquet"""
        print(f"\nπŸ“¦ Processing batch {batch_id} with {len(annotations)} annotations...")
        
        batch_data = []
        
        # Use ThreadPoolExecutor for concurrent downloads
        with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
            # Submit all download tasks
            future_to_annotation = {
                executor.submit(self.downloader.download_audio, ann['audio_file_name']): ann
                for ann in annotations
            }
            
            # Process completed downloads
            for future in tqdm(as_completed(future_to_annotation), 
                             total=len(annotations), 
                             desc=f"Batch {batch_id}"):
                annotation = future_to_annotation[future]
                try:
                    result = future.result()
                    if result:
                        file_path, audio_info = result
                        # Structure audio data for HuggingFace compatibility
                        audio_array = audio_info['audio_array']
                        
                        # Convert to list for serialization, handling different dtypes
                        if audio_info.get('dtype') == 'int16':
                            # For int16, convert to float32 for better compatibility with HF Audio
                            array_list = (audio_array.astype(np.float32) / 32767.0).tolist()
                        else:
                            array_list = audio_array.astype(np.float32).tolist()
                        
                        audio_data = {
                            'array': array_list,
                            'sampling_rate': int(audio_info['sample_rate']),
                            'path': f"audio/{annotation['audio_file_name']}"
                        }
                        
                        batch_data.append({
                            'audio': audio_data,  # HuggingFace standard audio column
                            'file_name': f"audio/{annotation['audio_file_name']}",  # Keep for compatibility
                            'sentence': annotation['sentence'],
                            'speaker': SPEAKER_NAME,
                            'duration': audio_info['duration'],
                            'sample_rate': audio_info['sample_rate']
                        })
                except Exception as e:
                    print(f"  ⚠️ Error processing {annotation['audio_file_name']}: {e}")
        
        if not batch_data:
            print(f"  ❌ No valid audio files in batch {batch_id}")
            return None
        
        # Save batch to parquet
        batch_file = self.temp_dir / f"batch_{batch_id:04d}.parquet"
        df = pd.DataFrame(batch_data)
        df.to_parquet(batch_file, index=False)
        
        print(f"  βœ… Saved {len(batch_data)} files to {batch_file}")
        return batch_file


class DatasetUploader:
    """Handles HuggingFace dataset upload using best practices"""
    
    def __init__(self, temp_dir: str, target_repo: str):
        self.temp_dir = Path(temp_dir)
        self.target_repo = target_repo
        self.api = HfApi()
    
    def prepare_dataset_structure(self) -> Path:
        """Prepare dataset structure for upload"""
        dataset_dir = self.temp_dir / "dataset"
        dataset_dir.mkdir(exist_ok=True)
        
        # Create audio directory
        audio_dir = dataset_dir / "audio"
        audio_dir.mkdir(exist_ok=True)
        
        batch_files = list(self.temp_dir.glob("batch_*.parquet"))
        print(f"\nπŸ“ Preparing dataset structure from {len(batch_files)} batch files...")
        
        if USE_GENERATOR:
            # Memory-efficient generator-based approach
            print("🧠 Using memory-efficient generator approach...")
            
            def audio_sample_generator():
                """Generator that yields one sample at a time to minimize memory usage"""
                sample_count = 0
                for batch_file in tqdm(batch_files, desc="Processing batch files"):
                    try:
                        df = pd.read_parquet(batch_file)
                        for _, row in df.iterrows():
                            sample_count += 1
                            yield {
                                'audio': row['audio'],
                                'file_name': row['file_name'],
                                'sentence': row['sentence'],
                                'speaker': row['speaker'],
                                'duration': row['duration'],
                                'sample_rate': row['sample_rate']
                            }
                        # Clean up processed batch file to save disk space
                        batch_file.unlink()
                        print(f"  🧹 Cleaned up {batch_file.name}")
                    except Exception as e:
                        print(f"  ⚠️ Error processing {batch_file}: {e}")
                        continue
                
                print(f"  βœ… Generated {sample_count} samples")
            
            # Create dataset using generator (memory efficient)
            print(f"\nπŸ”„ Creating HuggingFace dataset using generator...")
            
            features = Features({
                'audio': Audio(sampling_rate=None),
                'file_name': Value('string'),
                'sentence': Value('string'),
                'speaker': Value('string'),
                'duration': Value('float32'),
                'sample_rate': Value('int32')
            })
            
            dataset = Dataset.from_generator(
                audio_sample_generator, 
                features=features,
                cache_dir=str(self.temp_dir / "hf_cache")  # Use local cache
            )
            
            num_samples = len(dataset)
            
        else:
            # Original approach (memory intensive)
            print("⚠️ Using original approach - may consume significant memory...")
            all_data = []
            
            for batch_file in tqdm(batch_files, desc="Processing batches"):
                df = pd.read_parquet(batch_file)
                for _, row in df.iterrows():
                    all_data.append({
                        'audio': row['audio'],
                        'file_name': row['file_name'],
                        'sentence': row['sentence'],
                        'speaker': row['speaker'], 
                        'duration': row['duration'],
                        'sample_rate': row['sample_rate']
                    })
            
            print(f"\nπŸ”„ Creating HuggingFace dataset with {len(all_data)} samples...")
            df = pd.DataFrame(all_data)
            
            features = Features({
                'audio': Audio(sampling_rate=None),
                'file_name': Value('string'),
                'sentence': Value('string'), 
                'speaker': Value('string'),
                'duration': Value('float32'),
                'sample_rate': Value('int32')
            })
            
            dataset = Dataset.from_pandas(df, features=features)
            num_samples = len(all_data)
        
        # Save the dataset in HuggingFace format
        print(f"πŸ’Ύ Saving dataset to disk...")
        dataset.save_to_disk(str(dataset_dir / "dataset"))
        
        # Save metadata for compatibility (using a small sample to avoid memory issues)
        print(f"πŸ“‹ Creating metadata files...")
        sample_data = []
        for i, sample in enumerate(dataset.select(range(min(1000, len(dataset))))):
            sample_data.append({
                'file_name': sample['file_name'],
                'sentence': sample['sentence'],
                'speaker': sample['speaker'],
                'duration': sample['duration'],
                'sample_rate': sample['sample_rate']
            })
        
        metadata_df = pd.DataFrame(sample_data)
        metadata_df.to_parquet(dataset_dir / "train.parquet", index=False)
        metadata_df.to_parquet(dataset_dir / "metadata.parquet", index=False)
        
        # Create dataset card
        self._create_dataset_card(dataset_dir, num_samples)
        
        print(f"  βœ… Dataset prepared with {num_samples} samples in {dataset_dir}")
        return dataset_dir
    
    def _create_dataset_card(self, dataset_dir: Path, num_samples: int):
        """Create a basic dataset card"""
        card_content = f"""---
license: mit
task_categories:
- text-to-speech
language:
- fa
tags:
- tts
- persian
- farsi
- speech-synthesis
size_categories:
- {self._get_size_category(num_samples)}
---

# {TARGET_REPO.split('/')[-1]}

This dataset contains {num_samples} Persian TTS samples with the speaker "{SPEAKER_NAME}".

## Dataset Structure

- `dataset/`: HuggingFace dataset format with audio arrays
- `train.parquet`: Training split metadata 
- `metadata.parquet`: General metadata file (same content as train.parquet)

**Metadata columns:**
- `audio`: Audio data with array, sampling_rate, and path
  - `array`: Audio data as float array
  - `sampling_rate`: Sample rate in Hz  
  - `path`: Relative path to audio file
- `file_name`: Relative path to audio files (e.g., "audio/filename.mp3")
- `sentence`: Transcription text in Persian
- `speaker`: Speaker identifier ("{SPEAKER_NAME}")
- `duration`: Audio duration in seconds
- `sample_rate`: Audio sample rate in Hz

## Usage

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("{self.target_repo}")

# Access audio and transcription
for item in dataset['train']:
    audio_data = item['audio']       # Dict with 'array', 'sampling_rate', 'path'
    audio_array = audio_data['array'] # Actual audio as numpy array
    sample_rate = audio_data['sampling_rate'] # Sample rate
    text = item['sentence']          # Transcription
    speaker = item['speaker']        # Speaker ID

# You can also load with streaming for large datasets
dataset = load_dataset("{self.target_repo}", streaming=True)
for item in dataset['train']:
    audio = item['audio']['array']   # Audio array directly
    text = item['sentence']          # Transcription
```

## Speaker

- **Speaker ID**: {SPEAKER_NAME}
- **Language**: Persian (Farsi)
- **Total Samples**: {num_samples}

Generated using the TTS annotation system.
"""
        
        with open(dataset_dir / "README.md", 'w', encoding='utf-8') as f:
            f.write(card_content)
    
    def _get_size_category(self, num_samples: int) -> str:
        """Get size category for dataset card"""
        if num_samples < 1000:
            return "n<1K"
        elif num_samples < 10000:
            return "1K<n<10K"
        elif num_samples < 100000:
            return "10K<n<100K"
        else:
            return "100K<n<1M"
    
    def upload_dataset(self, dataset_dir: Path):
        """Upload dataset using HuggingFace best practices"""
        print(f"\nπŸš€ Uploading dataset to {self.target_repo}...")
        
        try:
            # Check if dataset directory exists in HF format
            hf_dataset_dir = dataset_dir / "dataset"
            if hf_dataset_dir.exists():
                print("πŸ“¦ Uploading HuggingFace dataset format...")
                # Load and push the dataset
                dataset = Dataset.load_from_disk(str(hf_dataset_dir))
                dataset.push_to_hub(
                    self.target_repo,
                    commit_message="Add TTS dataset with audio arrays"
                )
                print(f"βœ… Dataset upload completed successfully!")
            else:
                # Fallback to folder upload
                print("πŸ“ Uploading as folder...")
                self.api.upload_large_folder(
                    repo_id=self.target_repo,
                    repo_type="dataset", 
                    folder_path=str(dataset_dir)
                )
                print(f"βœ… Folder upload completed successfully!")
            
            print(f"Dataset available at: https://huggingface.co/datasets/{self.target_repo}")
            
        except Exception as e:
            print(f"❌ Upload failed: {e}")
            print("You can retry the upload or use the prepared dataset directory manually.")
            print(f"Dataset directory: {dataset_dir}")
            
            # Fallback to regular upload_folder with commit message
            print("\nπŸ”„ Trying fallback upload method...")
            try:
                self.api.upload_folder(
                    repo_id=self.target_repo,
                    repo_type="dataset",
                    folder_path=str(dataset_dir),
                    commit_message="Add TTS dataset with audio arrays"
                )
                print(f"βœ… Fallback upload completed successfully!")
                print(f"Dataset available at: https://huggingface.co/datasets/{self.target_repo}")
            except Exception as fallback_error:
                print(f"❌ Fallback upload also failed: {fallback_error}")
                print(f"Manual upload required. Dataset directory: {dataset_dir}")
                raise

def get_approved_annotations():
    """Get all approved annotations from the database"""
    connection = pymysql.connect(**DB_CONFIG)
    try:
        with connection.cursor(pymysql.cursors.DictCursor) as cursor:
            # Query for approved annotations
            query = """
            SELECT 
                a.annotated_sentence as sentence,
                td.filename as audio_file_name
            FROM annotations a
            JOIN validations v ON a.id = v.annotation_id
            JOIN tts_data td ON a.tts_data_id = td.id
            WHERE v.validated = 1
            """
            cursor.execute(query)
            results = cursor.fetchall()
            print(f"Found {len(results)} approved annotations")
            return results
    finally:
        connection.close()


def cleanup_temp_files(temp_dir: Path, keep_dataset: bool = True):
    """Clean up temporary files"""
    if not keep_dataset and temp_dir.exists():
        shutil.rmtree(temp_dir)
        print(f"🧹 Cleaned up temporary directory: {temp_dir}")
    else:
        # Only clean up batch files, keep the dataset
        batch_files = list(temp_dir.glob("batch_*.parquet"))
        for batch_file in batch_files:
            batch_file.unlink()
        print(f"🧹 Cleaned up {len(batch_files)} batch files")


def main():
    """Main export function with improved error handling and performance"""
    print("πŸš€ Starting optimized TTS data export to Hugging Face...")
    print(f"πŸ“Š Configuration:")
    print(f"   - Target repository: {TARGET_REPO}")
    print(f"   - Speaker: {SPEAKER_NAME}")
    print(f"   - Batch size: {BATCH_SIZE}")
    print(f"   - Cache directory: {CACHE_DIR}")
    print(f"   - Max concurrent downloads: {MAX_WORKERS}")
    
    if OPTIMIZE_MEMORY:
        print(f"🧠 Memory Optimizations Enabled:")
        print(f"   - Target sample rate: {TARGET_SAMPLE_RATE or 'Original'}")
        print(f"   - Audio data type: {AUDIO_DTYPE}")
        print(f"   - Generator-based processing: {USE_GENERATOR}")
    else:
        print("⚠️ Memory optimizations disabled - may consume significant RAM")
    
    try:
        # Initialize components
        cache_manager = CacheManager(CACHE_DIR)
        downloader = AudioDownloader(AUDIO_BASE_URL, cache_manager, MAX_RETRIES)
        processor = BatchProcessor(downloader, TEMP_DIR, BATCH_SIZE)
        uploader = DatasetUploader(TEMP_DIR, TARGET_REPO)
        
        # Get approved annotations
        print("\nπŸ“‹ Fetching approved annotations from database...")
        annotations = get_approved_annotations()
        
        if not annotations:
            print("❌ No approved annotations found!")
            return
        
        total_batches = (len(annotations) + BATCH_SIZE - 1) // BATCH_SIZE
        print(f"πŸ“¦ Will process {len(annotations)} annotations in {total_batches} batches")
        
        # Process annotations in batches
        batch_files = []
        for i in range(0, len(annotations), BATCH_SIZE):
            batch_id = i // BATCH_SIZE + 1
            batch_annotations = annotations[i:i + BATCH_SIZE]
            
            batch_file = processor.process_batch(batch_annotations, batch_id)
            if batch_file:
                batch_files.append(batch_file)
        
        if not batch_files:
            print("❌ No batches were processed successfully!")
            return
        
        print(f"\nβœ… Successfully processed {len(batch_files)} batches")
        
        # Prepare dataset structure
        dataset_dir = uploader.prepare_dataset_structure()
        
        # Login to HF
        print("\nπŸ”‘ Logging in to Hugging Face...")
        try:
            login()  # Will use HF_TOKEN env var or prompt for token
        except Exception as e:
            print(f"❌ HF login failed: {e}")
            print("Make sure you have HF_TOKEN environment variable set or login manually")
            return
        
        # Upload dataset
        uploader.upload_dataset(dataset_dir)
        
        # Cleanup
        cleanup_temp_files(Path(TEMP_DIR), keep_dataset=True)
        
        print("\nπŸŽ‰ Export completed successfully!")
        print(f"πŸ“Š Final stats:")
        print(f"   - Total annotations processed: {len(annotations)}")
        print(f"   - Successful batches: {len(batch_files)}")
        print(f"   - Dataset URL: https://huggingface.co/datasets/{TARGET_REPO}")
        print(f"   - Local dataset copy: {dataset_dir}")
        
    except KeyboardInterrupt:
        print("\n⚠️ Process interrupted by user")
        print("πŸ’‘ You can resume by running the script again - cached files will be reused")
    except Exception as e:
        print(f"\n❌ Error during export: {e}")
        print("πŸ’‘ Check the error above and try again - cached files will be reused")
        raise


if __name__ == "__main__":
    main()