Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,22 +12,40 @@ import spaces
|
|
12 |
import nemo.collections.asr as nemo_asr
|
13 |
|
14 |
LANGUAGE_NAME_TO_CODE = {
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
"Hindi": "hi",
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
}
|
19 |
|
20 |
|
21 |
DESCRIPTION = """\
|
22 |
### **IndicConformer: Speech Recognition for Indian Languages** ποΈβ‘οΈπ
|
23 |
-
|
24 |
-
**IndicConformer**, a speech recognition model for **22 Indian languages**. The model operates in two modes: **CTC (Connectionist Temporal Classification)** and **RNNT (Recurrent Neural Network Transducer)**
|
25 |
-
|
26 |
#### **How to Use:**
|
27 |
-
1. **Upload or record** an audio clip in
|
28 |
2. Select the **mode** (CTC or RNNT) for transcription.
|
29 |
-
3. Click **"Transcribe"** to generate the corresponding text.
|
30 |
-
|
|
|
31 |
"""
|
32 |
|
33 |
hf_token = os.getenv("HF_TOKEN")
|
@@ -41,8 +59,8 @@ model.eval()
|
|
41 |
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
|
42 |
|
43 |
AUDIO_SAMPLE_RATE = 16000
|
44 |
-
MAX_INPUT_AUDIO_LENGTH =
|
45 |
-
DEFAULT_TARGET_LANGUAGE = "
|
46 |
|
47 |
@spaces.GPU
|
48 |
def run_asr_ctc(input_audio: str, target_language: str) -> str:
|
@@ -135,6 +153,21 @@ with gr.Blocks() as demo_asr_ctc:
|
|
135 |
btn = gr.Button("Transcribe")
|
136 |
with gr.Column():
|
137 |
output_text = gr.Textbox(label="Transcribed text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
btn.click(
|
139 |
fn=run_asr_ctc,
|
140 |
inputs=[input_audio, target_language],
|
@@ -156,6 +189,20 @@ with gr.Blocks() as demo_asr_rnnt:
|
|
156 |
with gr.Column():
|
157 |
output_text = gr.Textbox(label="Transcribed text")
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
btn.click(
|
160 |
fn=run_asr_rnnt,
|
161 |
inputs=[input_audio, target_language],
|
@@ -166,11 +213,11 @@ with gr.Blocks() as demo_asr_rnnt:
|
|
166 |
|
167 |
with gr.Blocks(css="style.css") as demo:
|
168 |
gr.Markdown(DESCRIPTION)
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
|
175 |
with gr.Tabs():
|
176 |
with gr.Tab(label="CTC"):
|
|
|
12 |
import nemo.collections.asr as nemo_asr
|
13 |
|
14 |
LANGUAGE_NAME_TO_CODE = {
|
15 |
+
"Assamese": "as",
|
16 |
+
"Bengali": "bn",
|
17 |
+
"Bodo": "br",
|
18 |
+
"Dogri": "doi",
|
19 |
+
"Gujarati": "gu",
|
20 |
"Hindi": "hi",
|
21 |
+
"Kannada": "kn",
|
22 |
+
"Kashmiri": "ks",
|
23 |
+
"Konkani": "kok",
|
24 |
+
"Maithili": "mai",
|
25 |
+
"Malayalam": "ml",
|
26 |
+
"Manipuri": "mni",
|
27 |
+
"Marathi": "mr",
|
28 |
+
"Nepali": "ne",
|
29 |
+
"Odia": "or",
|
30 |
+
"Punjabi": "pa",
|
31 |
+
"Sanskrit": "sa",
|
32 |
+
"Santali": "sat",
|
33 |
+
"Sindhi": "sd",
|
34 |
+
"Tamil": "ta",
|
35 |
+
"Telugu": "te",
|
36 |
+
"Urdu": "ur"
|
37 |
}
|
38 |
|
39 |
|
40 |
DESCRIPTION = """\
|
41 |
### **IndicConformer: Speech Recognition for Indian Languages** ποΈβ‘οΈπ
|
42 |
+
This Gradio demo showcases **IndicConformer**, a speech recognition model for **22 Indian languages**. The model operates in two modes: **CTC (Connectionist Temporal Classification)** and **RNNT (Recurrent Neural Network Transducer)**, providing robust and accurate transcriptions across diverse linguistic and acoustic conditions.
|
|
|
|
|
43 |
#### **How to Use:**
|
44 |
+
1. **Upload or record** an audio clip in any supported Indian language.
|
45 |
2. Select the **mode** (CTC or RNNT) for transcription.
|
46 |
+
3. Click **"Transcribe"** to generate the corresponding text in the target language.
|
47 |
+
4. View or copy the output for further use.
|
48 |
+
π Try it out and experience seamless speech recognition for Indian languages!
|
49 |
"""
|
50 |
|
51 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
59 |
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
|
60 |
|
61 |
AUDIO_SAMPLE_RATE = 16000
|
62 |
+
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
63 |
+
DEFAULT_TARGET_LANGUAGE = "Bengali"
|
64 |
|
65 |
@spaces.GPU
|
66 |
def run_asr_ctc(input_audio: str, target_language: str) -> str:
|
|
|
153 |
btn = gr.Button("Transcribe")
|
154 |
with gr.Column():
|
155 |
output_text = gr.Textbox(label="Transcribed text")
|
156 |
+
|
157 |
+
gr.Examples(
|
158 |
+
examples=[
|
159 |
+
["assets/Bengali.wav", "Bengali", "English"],
|
160 |
+
["assets/Gujarati.wav", "Gujarati", "Hindi"],
|
161 |
+
["assets/Punjabi.wav", "Punjabi", "Hindi"],
|
162 |
+
|
163 |
+
],
|
164 |
+
inputs=[input_audio, target_language],
|
165 |
+
outputs=output_text,
|
166 |
+
fn=run_asr_ctc,
|
167 |
+
cache_examples=CACHE_EXAMPLES,
|
168 |
+
api_name=False,
|
169 |
+
)
|
170 |
+
|
171 |
btn.click(
|
172 |
fn=run_asr_ctc,
|
173 |
inputs=[input_audio, target_language],
|
|
|
189 |
with gr.Column():
|
190 |
output_text = gr.Textbox(label="Transcribed text")
|
191 |
|
192 |
+
gr.Examples(
|
193 |
+
examples=[
|
194 |
+
["assets/Bengali.wav", "Bengali", "English"],
|
195 |
+
["assets/Gujarati.wav", "Gujarati", "Hindi"],
|
196 |
+
["assets/Punjabi.wav", "Punjabi", "Hindi"],
|
197 |
+
|
198 |
+
],
|
199 |
+
inputs=[input_audio, target_language],
|
200 |
+
outputs=output_text,
|
201 |
+
fn=run_asr_rnnt,
|
202 |
+
cache_examples=CACHE_EXAMPLES,
|
203 |
+
api_name=False,
|
204 |
+
)
|
205 |
+
|
206 |
btn.click(
|
207 |
fn=run_asr_rnnt,
|
208 |
inputs=[input_audio, target_language],
|
|
|
213 |
|
214 |
with gr.Blocks(css="style.css") as demo:
|
215 |
gr.Markdown(DESCRIPTION)
|
216 |
+
gr.DuplicateButton(
|
217 |
+
value="Duplicate Space for private use",
|
218 |
+
elem_id="duplicate-button",
|
219 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
220 |
+
)
|
221 |
|
222 |
with gr.Tabs():
|
223 |
with gr.Tab(label="CTC"):
|