- app.py +497 -4
- requirements.txt +5 -0
app.py
CHANGED
@@ -1,7 +1,500 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
import gradio as gr
|
3 |
+
import polars as pl
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
import json
|
7 |
+
from gradio import ChatMessage
|
8 |
+
import os
|
9 |
|
10 |
+
IN_SPACE = bool(os.environ.get("SPACE_AUTHOR_NAME", False))
|
|
|
11 |
|
12 |
+
files = [
|
13 |
+
"./lmsys-ex38-model_oof_df.parquet",
|
14 |
+
"./lmsys-ex41-model_oof_df.parquet",
|
15 |
+
"./lmsys-ex43-model_oof_df.parquet",
|
16 |
+
"./lmsys-exp-llm-049-weight_preds.parquet",
|
17 |
+
"./lmsys-exp-llm-053-weight_preds.parquet",
|
18 |
+
"./lmsys-exp-llm-063-weight_preds.parquet",
|
19 |
+
"./lmsys-exp-llm-065-weight_preds.parquet",
|
20 |
+
"./lmsys-exp-llm-073-weight_preds.parquet",
|
21 |
+
"./lmsys-exp-llm-078-weight_preds.parquet",
|
22 |
+
"./lmsys-exp-llm-081-weight_preds.parquet",
|
23 |
+
"./lmsys-exp-llm-085-weight_preds.parquet",
|
24 |
+
"./lmsys-oof-exp2_preds.parquet",
|
25 |
+
"./lmsys-oof-exp29_preds.parquet",
|
26 |
+
]
|
27 |
+
train_filepath = "./train.parquet"
|
28 |
+
|
29 |
+
if not IN_SPACE:
|
30 |
+
files = [x.replace("./", "../../data/oofs/") for x in files]
|
31 |
+
train_filepath = "../../data/train.parquet"
|
32 |
+
from dotenv import load_dotenv
|
33 |
+
loaded = load_dotenv("../../.env")
|
34 |
+
print("Loaded .env file:", loaded)
|
35 |
+
|
36 |
+
HF_TOKEN = os.getenv("HF_READ_OOFS_TOKEN")
|
37 |
+
|
38 |
+
if not HF_TOKEN:
|
39 |
+
print("be sure to set HF_READ_OOFS_TOKEN in .env file")
|
40 |
+
|
41 |
+
if not Path(files[0]).exists():
|
42 |
+
from huggingface_hub import snapshot_download, login
|
43 |
+
|
44 |
+
login(token=HF_TOKEN)
|
45 |
+
|
46 |
+
snapshot_download("nbroad/lmsys-cahpp-oofs", repo_type="dataset", local_dir="./", local_dir_use_symlinks=False)
|
47 |
+
|
48 |
+
|
49 |
+
exps = {}
|
50 |
+
|
51 |
+
for f in files:
|
52 |
+
if "lmsys-exp-llm-" in f:
|
53 |
+
exp = f.split("lmsys-exp-llm-")[1].split("-")[0]
|
54 |
+
elif "lmsys-ex" in f:
|
55 |
+
exp = f.split("lmsys-ex")[1].split("-")[0]
|
56 |
+
elif "lmsys-oof-exp" in f:
|
57 |
+
exp = f.split("lmsys-oof-exp")[1].split("_")[0]
|
58 |
+
exps[f] = exp
|
59 |
+
exps[f.split("/")[-1]] = exp
|
60 |
+
|
61 |
+
|
62 |
+
def make_df():
|
63 |
+
data = {f: pd.read_parquet(f) for f in files}
|
64 |
+
|
65 |
+
for k in data.keys():
|
66 |
+
exp = exps[k]
|
67 |
+
|
68 |
+
if "0" in data[k].columns:
|
69 |
+
data[k] = data[k].rename(
|
70 |
+
columns={
|
71 |
+
"0": f"winner_model_a_prob_{exp}",
|
72 |
+
"1": f"winner_model_b_prob_{exp}",
|
73 |
+
"2": f"winner_tie_prob_{exp}",
|
74 |
+
},
|
75 |
+
)
|
76 |
+
|
77 |
+
elif "winner_tie_prob" not in data[k].columns:
|
78 |
+
|
79 |
+
data[k] = data[k].rename(
|
80 |
+
columns={
|
81 |
+
"winner_model_a": f"winner_model_a_prob_{exp}",
|
82 |
+
"winner_model_b": f"winner_model_b_prob_{exp}",
|
83 |
+
"winner_tie": f"winner_tie_prob_{exp}",
|
84 |
+
}
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
data[k] = data[k].rename(
|
88 |
+
columns={
|
89 |
+
"winner_model_a_prob": f"winner_model_a_prob_{exp}",
|
90 |
+
"winner_model_b_prob": f"winner_model_b_prob_{exp}",
|
91 |
+
"winner_tie_prob": f"winner_tie_prob_{exp}",
|
92 |
+
}
|
93 |
+
)
|
94 |
+
|
95 |
+
pred_cols = [
|
96 |
+
f"winner_model_a_prob_{exp}",
|
97 |
+
f"winner_model_b_prob_{exp}",
|
98 |
+
f"winner_tie_prob_{exp}",
|
99 |
+
]
|
100 |
+
|
101 |
+
data[k] = data[k].sort_values("id")
|
102 |
+
|
103 |
+
final_columns = ["id"] + pred_cols
|
104 |
+
|
105 |
+
data[k] = data[k][final_columns]
|
106 |
+
|
107 |
+
id_col = data[files[0]].iloc[:, 0]
|
108 |
+
|
109 |
+
joined = pd.concat([x.drop("id", axis=1) for x in data.values()], axis=1)
|
110 |
+
|
111 |
+
# joined = pl.concat([x.drop("id") for x in data.values()], how="horizontal")
|
112 |
+
# id_col = joined.iloc[:, 0]
|
113 |
+
# joined = joined.drop("id")
|
114 |
+
# joined = joined.insert_column(0, id_col)
|
115 |
+
|
116 |
+
joined["id"] = id_col
|
117 |
+
|
118 |
+
tdf = pd.read_parquet(train_filepath)
|
119 |
+
|
120 |
+
joined = joined.merge(tdf, on="id", how="left")
|
121 |
+
|
122 |
+
joined["winner"] = ""
|
123 |
+
joined.loc[joined["winner_model_a"] == 1, "winner"] = "A"
|
124 |
+
joined.loc[joined["winner_model_b"] == 1, "winner"] = "B"
|
125 |
+
joined.loc[joined["winner_tie"] == 1, "winner"] = "Tie"
|
126 |
+
|
127 |
+
for exp in exps.values():
|
128 |
+
pred_cols = [
|
129 |
+
f"winner_model_a_prob_{exp}",
|
130 |
+
f"winner_model_b_prob_{exp}",
|
131 |
+
f"winner_tie_prob_{exp}",
|
132 |
+
]
|
133 |
+
|
134 |
+
temp_scores = joined[pred_cols].values
|
135 |
+
|
136 |
+
if temp_scores.sum(axis=-1).max() > 1.1:
|
137 |
+
temp_scores = torch.tensor(temp_scores).softmax(-1)
|
138 |
+
else:
|
139 |
+
temp_scores = torch.tensor(temp_scores)
|
140 |
+
|
141 |
+
joined[pred_cols] = temp_scores.numpy()
|
142 |
+
|
143 |
+
gt_idxs = joined[
|
144 |
+
["winner_model_a", "winner_model_b", "winner_tie"]
|
145 |
+
].values.argsort()[:, -1]
|
146 |
+
temp = temp_scores[torch.arange(temp_scores.shape[0]), gt_idxs]
|
147 |
+
|
148 |
+
joined[f"loss_{exp}"] = torch.nn.functional.binary_cross_entropy(
|
149 |
+
temp, torch.ones(len(temp), dtype=torch.float64), reduction="none"
|
150 |
+
)
|
151 |
+
|
152 |
+
joined["prompt_length"] = [len(x) for x in joined["prompt"]]
|
153 |
+
joined["response_a_length"] = [len(x) for x in joined["response_a"]]
|
154 |
+
joined["response_b_length"] = [len(x) for x in joined["response_b"]]
|
155 |
+
joined["total_length"] = (
|
156 |
+
joined["prompt_length"]
|
157 |
+
+ joined["response_a_length"]
|
158 |
+
+ joined["response_b_length"]
|
159 |
+
)
|
160 |
+
|
161 |
+
loss_cols = [x for x in joined.columns if "loss" in x]
|
162 |
+
joined["avg_loss"] = joined[loss_cols].mean(axis=1)
|
163 |
+
joined["avg_winner_model_a"] = joined[
|
164 |
+
[x for x in joined.columns if "winner_model_a_prob" in x]
|
165 |
+
].mean(axis=1)
|
166 |
+
joined["avg_winner_model_b"] = joined[
|
167 |
+
[x for x in joined.columns if "winner_model_b_prob" in x]
|
168 |
+
].mean(axis=1)
|
169 |
+
joined["avg_winner_tie"] = joined[
|
170 |
+
[x for x in joined.columns if "winner_tie_prob" in x]
|
171 |
+
].mean(axis=1)
|
172 |
+
|
173 |
+
prob_cols = [x for x in joined.columns if "prob" in x]
|
174 |
+
loss_cols = [x for x in joined.columns if "loss" in x]
|
175 |
+
|
176 |
+
joined[prob_cols + loss_cols] = joined[prob_cols + loss_cols].astype("float16")
|
177 |
+
|
178 |
+
id2texts = {i: (p, a, b) for i, p, a, b in joined[["id", "prompt", "response_a", "response_b"]].values}
|
179 |
+
|
180 |
+
joined = joined.drop(columns=["prompt", "response_a", "response_b"])
|
181 |
+
|
182 |
+
return joined, id2texts
|
183 |
+
|
184 |
+
# def make_df():
|
185 |
+
# data = {f: pl.read_csv(f) for f in files}
|
186 |
+
|
187 |
+
# for k in data.keys():
|
188 |
+
# exp = exps[k]
|
189 |
+
|
190 |
+
# if "0" in data[k].columns:
|
191 |
+
# data[k] = data[k].rename({
|
192 |
+
# "0": f"winner_model_a_prob_{exp}",
|
193 |
+
# "1": f"winner_model_b_prob_{exp}",
|
194 |
+
# "2": f"winner_tie_prob_{exp}",
|
195 |
+
# })
|
196 |
+
# elif "winner_tie_prob" not in data[k].columns:
|
197 |
+
# data[k] = data[k].rename({
|
198 |
+
# "winner_model_a": f"winner_model_a_prob_{exp}",
|
199 |
+
# "winner_model_b": f"winner_model_b_prob_{exp}",
|
200 |
+
# "winner_tie": f"winner_tie_prob_{exp}",
|
201 |
+
# })
|
202 |
+
# else:
|
203 |
+
# data[k] = data[k].rename({
|
204 |
+
# "winner_model_a_prob": f"winner_model_a_prob_{exp}",
|
205 |
+
# "winner_model_b_prob": f"winner_model_b_prob_{exp}",
|
206 |
+
# "winner_tie_prob": f"winner_tie_prob_{exp}",
|
207 |
+
# })
|
208 |
+
|
209 |
+
# pred_cols = [
|
210 |
+
# f"winner_model_a_prob_{exp}",
|
211 |
+
# f"winner_model_b_prob_{exp}",
|
212 |
+
# f"winner_tie_prob_{exp}",
|
213 |
+
# ]
|
214 |
+
|
215 |
+
# data[k] = data[k].sort("id")
|
216 |
+
|
217 |
+
# final_columns = ["id"] + pred_cols
|
218 |
+
# data[k] = data[k].select(final_columns)
|
219 |
+
|
220 |
+
# id_col = data[files[0]].select("id")
|
221 |
+
|
222 |
+
# joined = pl.concat([x.drop("id") for x in data.values()], how="horizontal")
|
223 |
+
# joined = pl.concat([id_col, joined], how="horizontal")
|
224 |
+
|
225 |
+
# tdf = pl.read_csv(train_csv_path)
|
226 |
+
|
227 |
+
# joined = joined.join(tdf, on="id", how="left")
|
228 |
+
|
229 |
+
# joined = joined.with_columns([
|
230 |
+
# pl.when(pl.col("winner_model_a") == 1).then(0).otherwise(
|
231 |
+
# pl.when(pl.col("winner_model_b") == 1).then(1).otherwise(
|
232 |
+
# pl.when(pl.col("winner_tie") == 1).then(2).otherwise(3)
|
233 |
+
# )).alias("winner")
|
234 |
+
# ])
|
235 |
+
|
236 |
+
# for exp in exps.values():
|
237 |
+
# pred_cols = [
|
238 |
+
# f"winner_model_a_prob_{exp}",
|
239 |
+
# f"winner_model_b_prob_{exp}",
|
240 |
+
# f"winner_tie_prob_{exp}",
|
241 |
+
# ]
|
242 |
+
|
243 |
+
# temp_scores = joined.select(pred_cols).to_numpy()
|
244 |
+
|
245 |
+
# if temp_scores.sum(axis=-1).max() > 1.1:
|
246 |
+
# temp_scores = torch.tensor(temp_scores).softmax(-1)
|
247 |
+
# else:
|
248 |
+
# temp_scores = torch.tensor(temp_scores)
|
249 |
+
|
250 |
+
# joined = joined.with_columns([
|
251 |
+
# pl.Series(name=col, values=temp_scores[:, i].numpy())
|
252 |
+
# for i, col in enumerate(pred_cols)
|
253 |
+
# ])
|
254 |
+
|
255 |
+
# gt_idxs = joined.select(["winner_model_a", "winner_model_b", "winner_tie"]).to_numpy().argsort()[:, -1]
|
256 |
+
# temp = temp_scores[torch.arange(temp_scores.shape[0]), gt_idxs]
|
257 |
+
|
258 |
+
# loss = torch.nn.functional.binary_cross_entropy(
|
259 |
+
# temp, torch.ones(len(temp), dtype=torch.float64), reduction="none"
|
260 |
+
# )
|
261 |
+
|
262 |
+
# joined = joined.with_columns([
|
263 |
+
# pl.Series(name=f"loss_{exp}", values=loss.numpy())
|
264 |
+
# ])
|
265 |
+
|
266 |
+
# joined = joined.with_columns([
|
267 |
+
# pl.col("prompt").str.len_chars().alias("prompt_length"),
|
268 |
+
# pl.col("response_a").str.len_chars().alias("response_a_length"),
|
269 |
+
# pl.col("response_b").str.len_chars().alias("response_b_length"),
|
270 |
+
# ])
|
271 |
+
|
272 |
+
# joined = joined.with_columns([
|
273 |
+
# (pl.col("prompt_length") + pl.col("response_a_length") + pl.col("response_b_length")).alias("total_length")
|
274 |
+
# ])
|
275 |
+
|
276 |
+
# loss_cols = [x for x in joined.columns if "loss" in x]
|
277 |
+
|
278 |
+
# joined = joined.with_columns([
|
279 |
+
# pl.mean_horizontal(loss_cols).alias("avg_loss"),
|
280 |
+
# pl.mean_horizontal([x for x in joined.columns if "winner_model_a_prob" in x]).alias("avg_winner_model_a"),
|
281 |
+
# pl.mean_horizontal([x for x in joined.columns if "winner_model_b_prob" in x]).alias("avg_winner_model_b"),
|
282 |
+
# pl.mean_horizontal([x for x in joined.columns if "winner_tie_prob" in x]).alias("avg_winner_tie"),
|
283 |
+
# ])
|
284 |
+
|
285 |
+
# prob_cols = [x for x in joined.columns if "prob" in x]
|
286 |
+
# loss_cols = [x for x in joined.columns if "loss" in x]
|
287 |
+
|
288 |
+
# joined = joined.with_columns([
|
289 |
+
# pl.col(prob_cols + loss_cols).cast(pl.Float32)
|
290 |
+
# ])
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
# return joined
|
295 |
+
|
296 |
+
MAIN_DF, id2texts = make_df()
|
297 |
+
|
298 |
+
|
299 |
+
def filter_df(lower_limit, upper_limit, file, all_check):
|
300 |
+
if all_check or file is None or file == "":
|
301 |
+
loss_col = "avg_loss"
|
302 |
+
else:
|
303 |
+
loss_col = f"loss_{exps[file]}"
|
304 |
+
|
305 |
+
temp = MAIN_DF[
|
306 |
+
(MAIN_DF[loss_col] > lower_limit) & (MAIN_DF[loss_col] < upper_limit)
|
307 |
+
]
|
308 |
+
temp = temp.sort_values(loss_col, ascending=False).reset_index(drop=True)
|
309 |
+
|
310 |
+
return 0, temp
|
311 |
+
|
312 |
+
# def filter_df(lower_limit, upper_limit, file, all_check):
|
313 |
+
# if all_check or file is None or file == "":
|
314 |
+
# loss_col = "avg_loss"
|
315 |
+
# else:
|
316 |
+
# loss_col = f"loss_{exps[file]}"
|
317 |
+
|
318 |
+
# temp = MAIN_DF.filter(
|
319 |
+
# (pl.col(loss_col) > lower_limit) & (pl.col(loss_col) < upper_limit)
|
320 |
+
# ).sort(loss_col, descending=True)
|
321 |
+
|
322 |
+
# return 0, temp
|
323 |
+
|
324 |
+
|
325 |
+
def make_chat(prompt, response, side, label):
|
326 |
+
prompts = json.loads(prompt)
|
327 |
+
responses = json.loads(response)
|
328 |
+
|
329 |
+
header = None
|
330 |
+
if side == label:
|
331 |
+
header = "β
Winner β
"
|
332 |
+
elif label == 2 or label == "Tie":
|
333 |
+
header = "π¨ Tie π¨"
|
334 |
+
else:
|
335 |
+
header = "β Loser β"
|
336 |
+
|
337 |
+
chat = []
|
338 |
+
for p, r in zip(prompts, responses):
|
339 |
+
chat.append(
|
340 |
+
ChatMessage(
|
341 |
+
role="user",
|
342 |
+
content=header + "\n" + p,
|
343 |
+
)
|
344 |
+
)
|
345 |
+
|
346 |
+
if r is None:
|
347 |
+
r = ""
|
348 |
+
|
349 |
+
chat.append(ChatMessage(role="assistant", content=header + "\n" + r))
|
350 |
+
|
351 |
+
return chat
|
352 |
+
|
353 |
+
|
354 |
+
# def show_chats(idx, df, file, all_check):
|
355 |
+
|
356 |
+
# if idx is None:
|
357 |
+
# return None, None
|
358 |
+
|
359 |
+
# if idx > len(df):
|
360 |
+
# idx = len(df) - 1
|
361 |
+
# if idx < 0:
|
362 |
+
# idx = 0
|
363 |
+
|
364 |
+
# label = df["winner"].iloc[idx]
|
365 |
+
|
366 |
+
# chat_a = make_chat(df["prompt"].iloc[idx], df["response_a"].iloc[idx], "A", label)
|
367 |
+
# chat_b = make_chat(df["prompt"].iloc[idx], df["response_b"].iloc[idx], "B", label)
|
368 |
+
|
369 |
+
# if all_check or file is None or file == "":
|
370 |
+
# score_cols = ["avg_winner_model_a", "avg_winner_model_b", "avg_winner_tie"]
|
371 |
+
# else:
|
372 |
+
# score_cols = [
|
373 |
+
# f"winner_model_a_prob_{exps[file]}",
|
374 |
+
# f"winner_model_b_prob_{exps[file]}",
|
375 |
+
# f"winner_tie_prob_{exps[file]}",
|
376 |
+
# ]
|
377 |
+
|
378 |
+
# scores = df[score_cols].iloc[idx].tolist()
|
379 |
+
|
380 |
+
# if all_check or file is None or file == "":
|
381 |
+
# loss_col = "avg_loss"
|
382 |
+
# else:
|
383 |
+
# loss_col = f"loss_{exps[file]}"
|
384 |
+
|
385 |
+
# loss = df[loss_col].iloc[idx]
|
386 |
+
|
387 |
+
# return chat_a, chat_b, label, *scores, loss
|
388 |
+
|
389 |
+
def show_chats(idx, df, file, all_check):
|
390 |
+
if idx is None:
|
391 |
+
return None, None
|
392 |
+
|
393 |
+
if idx >= df.shape[0]:
|
394 |
+
idx = df.shape[0] - 1
|
395 |
+
if idx < 0:
|
396 |
+
idx = 0
|
397 |
+
|
398 |
+
row = df.iloc[idx]
|
399 |
+
label = row["winner"]
|
400 |
+
|
401 |
+
id_ = row["id"]
|
402 |
+
|
403 |
+
p, a, b = id2texts[id_]
|
404 |
+
|
405 |
+
chat_a = make_chat(p, a, "A", label)
|
406 |
+
chat_b = make_chat(p, b, "B", label)
|
407 |
+
|
408 |
+
# chat_a = make_chat(row["prompt"], row["response_a"], 0, label_idx)
|
409 |
+
# chat_b = make_chat(row["prompt"], row["response_b"], 1, label_idx)
|
410 |
+
|
411 |
+
if all_check or file is None or file == "":
|
412 |
+
score_cols = ["avg_winner_model_a", "avg_winner_model_b", "avg_winner_tie"]
|
413 |
+
else:
|
414 |
+
score_cols = [
|
415 |
+
f"winner_model_a_prob_{exps[file]}",
|
416 |
+
f"winner_model_b_prob_{exps[file]}",
|
417 |
+
f"winner_tie_prob_{exps[file]}",
|
418 |
+
]
|
419 |
+
|
420 |
+
scores = row[score_cols].to_list()
|
421 |
+
|
422 |
+
if all_check or file is None or file == "":
|
423 |
+
loss_col = "avg_loss"
|
424 |
+
else:
|
425 |
+
loss_col = f"loss_{exps[file]}"
|
426 |
+
|
427 |
+
loss = row[loss_col]
|
428 |
+
|
429 |
+
# labels = ["A", "B", "Tie"]
|
430 |
+
|
431 |
+
return chat_a, chat_b, label, *scores, loss
|
432 |
+
|
433 |
+
|
434 |
+
with gr.Blocks() as demo:
|
435 |
+
|
436 |
+
gr.LoginButton()
|
437 |
+
|
438 |
+
gr.Markdown(
|
439 |
+
"""
|
440 |
+
# OOF Visualization
|
441 |
+
|
442 |
+
This is a demo for visualizing the out-of-fold predictions of a model.
|
443 |
+
It currently shows the predictions for the outputs of [this notebook](https://www.kaggle.com/code/kcotton21/lmsys-preds/notebook).
|
444 |
+
"""
|
445 |
+
)
|
446 |
+
with gr.Row():
|
447 |
+
with gr.Column():
|
448 |
+
file = gr.Dropdown(label="File", choices=[x.split("/")[-1] for x in files])
|
449 |
+
with gr.Column():
|
450 |
+
all_check = gr.Checkbox(label="Use average loss of all files")
|
451 |
+
with gr.Row():
|
452 |
+
lower_limit = gr.Slider(
|
453 |
+
label="Show samples with loss > this value", minimum=0, maximum=5, value=1
|
454 |
+
)
|
455 |
+
upper_limit = gr.Slider(
|
456 |
+
label="Show samples with loss < this value", minimum=0, maximum=5, value=5
|
457 |
+
)
|
458 |
+
|
459 |
+
# id_ = gr.Number(label="ID")
|
460 |
+
idx = gr.Number(visible=True)
|
461 |
+
hidden_df = gr.Dataframe(visible=False)
|
462 |
+
with gr.Row():
|
463 |
+
correct_label = gr.Textbox(label="Correct Label", interactive=False)
|
464 |
+
score_a = gr.Textbox(label="Model A Score", interactive=False)
|
465 |
+
score_b = gr.Textbox(label="Model B Score", interactive=False)
|
466 |
+
score_tie = gr.Textbox(label="Tie Score", interactive=False)
|
467 |
+
loss = gr.Textbox(label="Loss", interactive=False)
|
468 |
+
with gr.Row():
|
469 |
+
with gr.Column():
|
470 |
+
prev_btn = gr.Button(value="Previous")
|
471 |
+
with gr.Column():
|
472 |
+
next_btn = gr.Button(value="Next")
|
473 |
+
|
474 |
+
with gr.Row():
|
475 |
+
with gr.Column():
|
476 |
+
chat_a = gr.Chatbot(label="Model A", type="messages", height=1000)
|
477 |
+
with gr.Column():
|
478 |
+
chat_b = gr.Chatbot(label="Model B", type="messages", height=1000)
|
479 |
+
|
480 |
+
lower_limit.change(
|
481 |
+
filter_df,
|
482 |
+
inputs=[lower_limit, upper_limit, file, all_check],
|
483 |
+
outputs=[idx, hidden_df],
|
484 |
+
)
|
485 |
+
upper_limit.change(
|
486 |
+
filter_df,
|
487 |
+
inputs=[lower_limit, upper_limit, file, all_check],
|
488 |
+
outputs=[idx, hidden_df],
|
489 |
+
)
|
490 |
+
|
491 |
+
idx.change(
|
492 |
+
show_chats,
|
493 |
+
inputs=[idx, hidden_df, file, all_check],
|
494 |
+
outputs=[chat_a, chat_b, correct_label, score_a, score_b, score_tie, loss],
|
495 |
+
)
|
496 |
+
prev_btn.click(lambda x: max(0, x - 1), inputs=idx, outputs=idx)
|
497 |
+
next_btn.click(lambda x: x + 1, inputs=idx, outputs=idx)
|
498 |
+
|
499 |
+
|
500 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
gradio
|
5 |
+
polars
|