nbroad's picture
Upload app.py with huggingface_hub
70ed3ab verified
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import requests
from bs4 import BeautifulSoup
import asyncio
import aiohttp
from datetime import datetime, timezone
from typing import List, Dict, Optional
import uvicorn
import os
import pandas as pd
from datasets import Dataset, load_dataset
from huggingface_hub import HfApi
import logging
from contextlib import asynccontextmanager
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
IN_SPACE = os.getenv("SPACE_REPO_NAME") is not None
if not IN_SPACE:
from dotenv import load_dotenv
load_dotenv()
# Global variables for dataset management
DATASET_REPO_NAME = os.getenv("DATASET_REPO_NAME", "nbroad/hf-inference-providers-data")
HF_TOKEN = os.getenv("HF_TOKEN")
# Time to wait between data collection runs in seconds
DATA_COLLECTION_INTERVAL = 1800
# Background task state
data_collection_task = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Manage application lifecycle"""
# Start background task
global data_collection_task
data_collection_task = asyncio.create_task(timed_data_collection())
logger.info("Started hourly data collection task")
yield
# Cleanup
if data_collection_task:
data_collection_task.cancel()
logger.info("Stopped hourly data collection task")
app = FastAPI(title="Inference Provider Dashboard", lifespan=lifespan)
# List of providers to track
PROVIDERS = [
"togethercomputer",
"fireworks-ai",
"nebius",
"fal",
"groq",
"cerebras",
"sambanovasystems",
"replicate",
"novita",
"Hyperbolic",
"featherless-ai",
"CohereLabs",
"nscale",
]
# Mapping from display provider names to inference provider API names
PROVIDER_TO_INFERENCE_NAME = {
"togethercomputer": "together",
"fal": "fal-ai",
"sambanovasystems": "sambanova",
"Hyperbolic": "hyperbolic",
"CohereLabs": "cohere",
# Other providers may not have inference provider support or use different names
"fireworks-ai": "fireworks-ai",
"nebius": "nebius",
"groq": "groq",
"cerebras": "cerebras",
"replicate": "replicate",
"novita": "novita",
"featherless-ai": "featherless-ai",
"nscale": "nscale",
}
templates = Jinja2Templates(directory="templates")
async def get_monthly_requests(session: aiohttp.ClientSession, provider: str) -> Dict[str, str]:
"""Get monthly requests for a provider from HuggingFace"""
url = f"https://huggingface.co/{provider}"
try:
async with session.get(url) as response:
html = await response.text()
soup = BeautifulSoup(html, 'html.parser')
request_div = soup.find('div', text=lambda t: t and 'monthly requests' in t.lower())
if request_div:
requests_text = request_div.text.split()[0].replace(',', '')
return {
"provider": provider,
"monthly_requests": requests_text,
"monthly_requests_int": int(requests_text) if requests_text.isdigit() else 0
}
return {
"provider": provider,
"monthly_requests": "N/A",
"monthly_requests_int": 0
}
except Exception as e:
logger.error(f"Error fetching {provider}: {e}")
return {
"provider": provider,
"monthly_requests": "N/A",
"monthly_requests_int": 0
}
async def get_provider_models(session: aiohttp.ClientSession, provider: str) -> List[str]:
"""Get supported models for a provider from HuggingFace API"""
if not HF_TOKEN:
return []
# Map display provider name to inference provider API name
inference_provider = PROVIDER_TO_INFERENCE_NAME.get(provider)
if not inference_provider:
logger.warning(f"No inference provider mapping found for {provider}")
return []
url = f"https://huggingface.co/api/models?inference_provider={inference_provider}&limit=50&sort=downloads&direction=-1"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
try:
async with session.get(url, headers=headers) as response:
if response.status == 200:
models_data = await response.json()
model_ids = [model.get('id', '') for model in models_data if model.get('id')]
return model_ids
else:
logger.warning(f"Failed to fetch models for {provider} (inference_provider={inference_provider}): {response.status}")
return []
except Exception as e:
logger.error(f"Error fetching models for {provider} (inference_provider={inference_provider}): {e}")
return []
async def collect_and_store_data():
"""Collect current data and store it in the dataset"""
if not HF_TOKEN:
logger.warning("No HF_TOKEN found, skipping data storage")
return
try:
logger.info("Collecting data for storage...")
# Collect current data
async with aiohttp.ClientSession() as session:
tasks = [get_monthly_requests(session, provider) for provider in PROVIDERS]
results = await asyncio.gather(*tasks)
# Create DataFrame with timestamp
timestamp = datetime.now(timezone.utc).isoformat()
data_rows = []
for result in results:
data_rows.append({
"timestamp": timestamp,
"provider": result["provider"],
"monthly_requests": result["monthly_requests"],
"monthly_requests_int": result["monthly_requests_int"]
})
new_df = pd.DataFrame(data_rows)
# Try to load existing dataset and append
try:
existing_dataset = load_dataset(DATASET_REPO_NAME, split="train")
existing_df = existing_dataset.to_pandas()
combined_df = pd.concat([existing_df, new_df], ignore_index=True)
except Exception as e:
logger.info(f"Creating new dataset (existing not found): {e}")
combined_df = new_df
# De-duplicate by monthly_requests_int, keeping earliest timestamp for each value
combined_df['timestamp'] = pd.to_datetime(combined_df['timestamp'])
combined_df = combined_df.sort_values('timestamp')
# Group by provider and monthly_requests_int, keep first (earliest) occurrence
deduplicated_df = combined_df.groupby(['provider', 'monthly_requests_int']).first().reset_index()
# Convert timestamp back to string format
deduplicated_df['timestamp'] = deduplicated_df['timestamp'].dt.strftime('%Y-%m-%dT%H:%M:%S.%f%z')
logger.info(f"De-duplicated dataset: {len(combined_df)} -> {len(deduplicated_df)} records")
# Convert back to dataset and push
new_dataset = Dataset.from_pandas(deduplicated_df)
new_dataset.push_to_hub(DATASET_REPO_NAME, token=HF_TOKEN, private=False)
logger.info(f"Successfully stored data for {len(results)} providers")
except Exception as e:
logger.error(f"Error collecting and storing data: {e}")
async def timed_data_collection():
"""Background task that runs every DATA_COLLECTION_INTERVAL seconds to collect data"""
while True:
try:
await collect_and_store_data()
await asyncio.sleep(DATA_COLLECTION_INTERVAL)
except asyncio.CancelledError:
logger.info("Data collection task cancelled")
break
except Exception as e:
logger.error(f"Error in hourly data collection: {e}")
# Wait 5 minutes before retrying on error
await asyncio.sleep(300)
@app.get("/")
async def dashboard(request: Request):
"""Serve the main dashboard page"""
return templates.TemplateResponse("dashboard.html", {"request": request})
@app.get("/api/providers")
async def get_providers_data():
"""API endpoint to get provider data"""
async with aiohttp.ClientSession() as session:
tasks = [get_monthly_requests(session, provider) for provider in PROVIDERS]
results = await asyncio.gather(*tasks)
# Sort by request count descending
results.sort(key=lambda x: x["monthly_requests_int"], reverse=True)
return {
"providers": results,
"last_updated": datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
"total_providers": len(results)
}
@app.get("/api/providers/{provider}")
async def get_provider_data(provider: str):
"""API endpoint to get data for a specific provider"""
if provider not in PROVIDERS:
return {"error": "Provider not found"}
async with aiohttp.ClientSession() as session:
result = await get_monthly_requests(session, provider)
return {
"provider_data": result,
"last_updated": datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
@app.get("/api/historical")
async def get_historical_data():
"""API endpoint to get historical data for line chart"""
if not HF_TOKEN:
logger.warning("No HF_TOKEN available for historical data")
return {
"error": "Historical data not available - no HF token",
"historical_data": {},
"message": "Historical data collection requires HuggingFace token"
}
try:
# Load historical dataset
dataset = load_dataset(DATASET_REPO_NAME, split="train")
df = dataset.to_pandas()
logger.info(f"Loaded dataset with {len(df)} total records")
if df.empty:
logger.info("Dataset is empty - no historical data available yet")
return {
"historical_data": {},
"message": "No historical data available yet. Data collection is running - check back in 30 minutes.",
"last_updated": datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
# Group by timestamp and provider, get the latest entry for each timestamp-provider combo
df['timestamp'] = pd.to_datetime(df['timestamp'])
df = df.sort_values('timestamp')
# Use all available data to show full historical range
df_filtered = df.copy()
logger.info(f"Using all {len(df_filtered)} records for full historical view")
# For performance, limit to reasonable number of points per provider
max_points_per_provider = 500
if len(df_filtered) > max_points_per_provider * len(PROVIDERS):
# Sample data to keep it manageable while preserving time range
df_filtered = df_filtered.groupby('provider').apply(
lambda x: x.iloc[::max(1, len(x) // max_points_per_provider)]
).reset_index(drop=True)
logger.info(f"Sampled down to {len(df_filtered)} records for performance")
# Prepare data for Chart.js line chart
historical_data = {}
total_data_points = 0
for provider in PROVIDERS:
provider_data = df_filtered[df_filtered['provider'] == provider].copy()
if not provider_data.empty:
# Format for Chart.js: {x: timestamp, y: value}
historical_data[provider] = [
{
"x": row['timestamp'].isoformat(),
"y": row['monthly_requests_int']
}
for _, row in provider_data.iterrows()
]
total_data_points += len(historical_data[provider])
else:
historical_data[provider] = []
logger.info(f"Returning {total_data_points} total data points across {len([p for p in historical_data.values() if p])} providers")
# Calculate date range for display
if not df_filtered.empty:
earliest_date = df_filtered['timestamp'].min().strftime('%Y-%m-%d %H:%M')
latest_date = df_filtered['timestamp'].max().strftime('%Y-%m-%d %H:%M')
date_range = f"From {earliest_date} to {latest_date}"
else:
date_range = "No data"
return {
"historical_data": historical_data,
"last_updated": datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
"total_data_points": total_data_points,
"data_range": date_range,
"earliest_date": df_filtered['timestamp'].min().isoformat() if not df_filtered.empty else None,
"latest_date": df_filtered['timestamp'].max().isoformat() if not df_filtered.empty else None
}
except Exception as e:
logger.error(f"Error fetching historical data: {e}")
# Try to create initial data if dataset doesn't exist
if "does not exist" in str(e).lower() or "not found" in str(e).lower():
logger.info("Dataset doesn't exist yet, triggering initial data collection")
try:
await collect_and_store_data()
return {
"historical_data": {},
"message": "Dataset created! Historical data will appear after a few data collection cycles.",
"last_updated": datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
except Exception as create_error:
logger.error(f"Failed to create initial dataset: {create_error}")
return {
"error": f"Failed to fetch historical data: {str(e)}",
"historical_data": {},
"message": "Historical data temporarily unavailable"
}
@app.get("/api/models")
async def get_provider_models_data():
"""API endpoint to get supported models matrix for all providers"""
if not HF_TOKEN:
return {"error": "HF_TOKEN required for models data", "matrix": [], "providers": PROVIDERS}
async with aiohttp.ClientSession() as session:
tasks = [get_provider_models(session, provider) for provider in PROVIDERS]
results = await asyncio.gather(*tasks)
# Create provider -> models mapping
provider_models = {}
all_models = set()
for provider, models in zip(PROVIDERS, results):
provider_models[provider] = set(models)
all_models.update(models)
# Convert to list and sort by popularity (number of providers supporting each model)
model_popularity = []
for model in all_models:
provider_count = sum(1 for provider in PROVIDERS if model in provider_models.get(provider, set()))
model_popularity.append((model, provider_count))
# Sort by popularity (descending) then by model name
model_popularity.sort(key=lambda x: (-x[1], x[0]))
# Build matrix data
matrix = []
for model_id, popularity in model_popularity:
row = {
"model_id": model_id,
"total_providers": popularity,
"providers": {}
}
for provider in PROVIDERS:
row["providers"][provider] = model_id in provider_models.get(provider, set())
matrix.append(row)
# Calculate totals per provider
provider_totals = {}
for provider in PROVIDERS:
provider_totals[provider] = len(provider_models.get(provider, set()))
return {
"matrix": matrix,
"providers": PROVIDERS,
"provider_totals": provider_totals,
"provider_mapping": PROVIDER_TO_INFERENCE_NAME,
"total_models": len(all_models),
"last_updated": datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
@app.post("/api/collect-now")
async def trigger_data_collection(background_tasks: BackgroundTasks):
"""Manual trigger for data collection"""
background_tasks.add_task(collect_and_store_data)
return {"message": "Data collection triggered", "timestamp": datetime.now().isoformat()}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)