|  | from toolbox import update_ui | 
					
						
						|  | from toolbox import CatchException, report_execption, write_results_to_file | 
					
						
						|  | fast_debug = False | 
					
						
						|  |  | 
					
						
						|  | class PaperFileGroup(): | 
					
						
						|  | def __init__(self): | 
					
						
						|  | self.file_paths = [] | 
					
						
						|  | self.file_contents = [] | 
					
						
						|  | self.sp_file_contents = [] | 
					
						
						|  | self.sp_file_index = [] | 
					
						
						|  | self.sp_file_tag = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from request_llm.bridge_all import model_info | 
					
						
						|  | enc = model_info["gpt-3.5-turbo"]['tokenizer'] | 
					
						
						|  | def get_token_num(txt): return len(enc.encode(txt, disallowed_special=())) | 
					
						
						|  | self.get_token_num = get_token_num | 
					
						
						|  |  | 
					
						
						|  | def run_file_split(self, max_token_limit=1900): | 
					
						
						|  | """ | 
					
						
						|  | 将长文本分离开来 | 
					
						
						|  | """ | 
					
						
						|  | for index, file_content in enumerate(self.file_contents): | 
					
						
						|  | if self.get_token_num(file_content) < max_token_limit: | 
					
						
						|  | self.sp_file_contents.append(file_content) | 
					
						
						|  | self.sp_file_index.append(index) | 
					
						
						|  | self.sp_file_tag.append(self.file_paths[index]) | 
					
						
						|  | else: | 
					
						
						|  | from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf | 
					
						
						|  | segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit) | 
					
						
						|  | for j, segment in enumerate(segments): | 
					
						
						|  | self.sp_file_contents.append(segment) | 
					
						
						|  | self.sp_file_index.append(index) | 
					
						
						|  | self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex") | 
					
						
						|  |  | 
					
						
						|  | print('Segmentation: done') | 
					
						
						|  |  | 
					
						
						|  | def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'): | 
					
						
						|  | import time, os, re | 
					
						
						|  | from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pfg = PaperFileGroup() | 
					
						
						|  |  | 
					
						
						|  | for index, fp in enumerate(file_manifest): | 
					
						
						|  | with open(fp, 'r', encoding='utf-8', errors='replace') as f: | 
					
						
						|  | file_content = f.read() | 
					
						
						|  |  | 
					
						
						|  | comment_pattern = r'%.*' | 
					
						
						|  |  | 
					
						
						|  | clean_tex_content = re.sub(comment_pattern, '', file_content) | 
					
						
						|  |  | 
					
						
						|  | pfg.file_paths.append(fp) | 
					
						
						|  | pfg.file_contents.append(clean_tex_content) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pfg.run_file_split(max_token_limit=1024) | 
					
						
						|  | n_split = len(pfg.sp_file_contents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if language == 'en->zh': | 
					
						
						|  | inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" + | 
					
						
						|  | f"\n\n{frag}" for frag in pfg.sp_file_contents] | 
					
						
						|  | inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag] | 
					
						
						|  | sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)] | 
					
						
						|  | elif language == 'zh->en': | 
					
						
						|  | inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" + | 
					
						
						|  | f"\n\n{frag}" for frag in pfg.sp_file_contents] | 
					
						
						|  | inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag] | 
					
						
						|  | sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)] | 
					
						
						|  |  | 
					
						
						|  | gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( | 
					
						
						|  | inputs_array=inputs_array, | 
					
						
						|  | inputs_show_user_array=inputs_show_user_array, | 
					
						
						|  | llm_kwargs=llm_kwargs, | 
					
						
						|  | chatbot=chatbot, | 
					
						
						|  | history_array=[[""] for _ in range(n_split)], | 
					
						
						|  | sys_prompt_array=sys_prompt_array, | 
					
						
						|  |  | 
					
						
						|  | scroller_max_len = 80 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md" | 
					
						
						|  | res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name) | 
					
						
						|  | history = gpt_response_collection | 
					
						
						|  | chatbot.append((f"{fp}完成了吗?", res)) | 
					
						
						|  | yield from update_ui(chatbot=chatbot, history=history) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @CatchException | 
					
						
						|  | def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | 
					
						
						|  |  | 
					
						
						|  | chatbot.append([ | 
					
						
						|  | "函数插件功能?", | 
					
						
						|  | "对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"]) | 
					
						
						|  | yield from update_ui(chatbot=chatbot, history=history) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | import tiktoken | 
					
						
						|  | except: | 
					
						
						|  | report_execption(chatbot, history, | 
					
						
						|  | a=f"解析项目: {txt}", | 
					
						
						|  | b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。") | 
					
						
						|  | yield from update_ui(chatbot=chatbot, history=history) | 
					
						
						|  | return | 
					
						
						|  | history = [] | 
					
						
						|  | import glob, os | 
					
						
						|  | if os.path.exists(txt): | 
					
						
						|  | project_folder = txt | 
					
						
						|  | else: | 
					
						
						|  | if txt == "": txt = '空空如也的输入栏' | 
					
						
						|  | report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}") | 
					
						
						|  | yield from update_ui(chatbot=chatbot, history=history) | 
					
						
						|  | return | 
					
						
						|  | file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] | 
					
						
						|  | if len(file_manifest) == 0: | 
					
						
						|  | report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}") | 
					
						
						|  | yield from update_ui(chatbot=chatbot, history=history) | 
					
						
						|  | return | 
					
						
						|  | yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @CatchException | 
					
						
						|  | def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | 
					
						
						|  |  | 
					
						
						|  | chatbot.append([ | 
					
						
						|  | "函数插件功能?", | 
					
						
						|  | "对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"]) | 
					
						
						|  | yield from update_ui(chatbot=chatbot, history=history) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | import tiktoken | 
					
						
						|  | except: | 
					
						
						|  | report_execption(chatbot, history, | 
					
						
						|  | a=f"解析项目: {txt}", | 
					
						
						|  | b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。") | 
					
						
						|  | yield from update_ui(chatbot=chatbot, history=history) | 
					
						
						|  | return | 
					
						
						|  | history = [] | 
					
						
						|  | import glob, os | 
					
						
						|  | if os.path.exists(txt): | 
					
						
						|  | project_folder = txt | 
					
						
						|  | else: | 
					
						
						|  | if txt == "": txt = '空空如也的输入栏' | 
					
						
						|  | report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}") | 
					
						
						|  | yield from update_ui(chatbot=chatbot, history=history) | 
					
						
						|  | return | 
					
						
						|  | file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] | 
					
						
						|  | if len(file_manifest) == 0: | 
					
						
						|  | report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}") | 
					
						
						|  | yield from update_ui(chatbot=chatbot, history=history) | 
					
						
						|  | return | 
					
						
						|  | yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en') |