File size: 21,875 Bytes
d119685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e45b9a
e30c86f
 
 
 
 
 
 
 
 
 
 
 
 
d119685
e30c86f
 
 
 
 
 
 
 
d119685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import json
import uuid
import time
import asyncio
import logging
from datetime import datetime
from typing import Dict, List, Optional, Union, Any

import httpx
from fastapi import FastAPI, Request, Response, Depends, HTTPException, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Field

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='[%(asctime)s] %(levelname)s: %(message)s',
    datefmt='%Y-%m-%dT%H:%M:%S'
)
logger = logging.getLogger(__name__)

# Import os for environment variables
import os

# Configuration constants
CONFIG = {
    "API": {
        "BASE_URL": os.environ.get("API_BASE_URL", "https://fragments.e2b.dev"),
        "API_KEY": os.environ.get("API_KEY", "sk-123456")  # Customize your own authentication key
    },
    "RETRY": {
        "MAX_ATTEMPTS": 1,
        "DELAY_BASE": 1000
    },
    "MODEL_CONFIG": {
        "o1-preview": {
            "id": "o1",
            "provider": "OpenAI",
            "providerId": "openai",
            "name": "o1",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 2,
                "max_tokensMax": 0,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 500
            }
        },
        "o3-mini": {
            "id": "o3-mini",
            "provider": "OpenAI",
            "providerId": "openai",
            "name": "o3 Mini",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 2,
                "max_tokensMax": 4096,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 500
            }
        },
        "gpt-4o": {
            "id": "gpt-4o",
            "provider": "OpenAI",
            "providerId": "openai",
            "name": "GPT-4o",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 2,
                "max_tokensMax": 16380,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 500
            }
        },
        "gpt-4.5-preview": {
            "id": "gpt-4.5-preview",
            "provider": "OpenAI",
            "providerId": "openai",
            "name": "GPT-4.5",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 2,
                "max_tokensMax": 16380,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 500
            }
        },
        "gpt-4-turbo": {
            "id": "gpt-4-turbo",
            "provider": "OpenAI",
            "providerId": "openai",
            "name": "GPT-4 Turbo",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 2,
                "max_tokensMax": 16380,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 500
            }
        },
        "gemini-1.5-pro": {
            "id": "gemini-1.5-pro-002",
            "provider": "Google Vertex AI",
            "providerId": "vertex",
            "name": "Gemini 1.5 Pro",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 2,
                "max_tokensMax": 8192,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 500
            }
        },
        "gemini-2.5-pro-exp-03-25": {
            "id": "gemini-2.5-pro-exp-03-25",
            "provider": "Google Generative AI",
            "providerId": "google",
            "name": "Gemini 2.5 Pro Experimental 03-25",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 2,
                "max_tokensMax": 8192,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 40
            }
        },
        "gemini-exp-1121": {
            "id": "gemini-exp-1121",
            "provider": "Google Generative AI",
            "providerId": "google",
            "name": "Gemini Experimental 1121",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 2,
                "max_tokensMax": 8192,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 40
            }
        },
        "gemini-2.0-flash-exp": {
            "id": "models/gemini-2.0-flash-exp",
            "provider": "Google Generative AI",
            "providerId": "google",
            "name": "Gemini 2.0 Flash",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 2,
                "max_tokensMax": 8192,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 40
            }
        },
        "claude-3-5-sonnet-latest": {
            "id": "claude-3-5-sonnet-latest",
            "provider": "Anthropic",
            "providerId": "anthropic",
            "name": "Claude 3.5 Sonnet",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 1,
                "max_tokensMax": 8192,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 500
            }
        },
        "claude-3-7-sonnet-latest": {
            "id": "claude-3-7-sonnet-latest",
            "provider": "Anthropic",
            "providerId": "anthropic",
            "name": "Claude 3.7 Sonnet",
            "multiModal": True,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 1,
                "max_tokensMax": 8192,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 500
            }
        },
        "claude-3-5-haiku-latest": {
            "id": "claude-3-5-haiku-latest",
            "provider": "Anthropic",
            "providerId": "anthropic",
            "name": "Claude 3.5 Haiku",
            "multiModal": False,
            "Systemprompt": "",
            "opt_max": {
                "temperatureMax": 1,
                "max_tokensMax": 8192,
                "presence_penaltyMax": 2,
                "frequency_penaltyMax": 2,
                "top_pMax": 1,
                "top_kMax": 500
            }
        }
    },
    "DEFAULT_HEADERS": {
        "accept": "*/*",
        "accept-language": "zh-CN,zh;q=0.9",
        "content-type": "application/json",
        "priority": "u=1, i",
        "sec-ch-ua": "\"Microsoft Edge\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
        "sec-ch-ua-mobile": "?0",
        "sec-ch-ua-platform": "\"Windows\"",
        "sec-fetch-dest": "empty",
        "sec-fetch-mode": "cors",
        "sec-fetch-site": "same-origin",
        "Referer": "https://fragments.e2b.dev/",
        "Referrer-Policy": "strict-origin-when-cross-origin"
    },
    "MODEL_PROMPT": "Chatting with users and starting role-playing, the most important thing is to pay attention to their latest messages, use only 'text' to output the chat text reply content generated for user messages, and finally output it in code"
}


# Utility functions
def generate_uuid():
    """Generate a UUID v4 string."""
    return str(uuid.uuid4())


async def config_opt(params: Dict[str, Any], model_config: Dict[str, Any]) -> Optional[Dict[str, Any]]:
    """Constrain parameters based on model configuration."""
    if not model_config.get("opt_max"):
        return None

    options_map = {
        "temperature": "temperatureMax",
        "max_tokens": "max_tokensMax",
        "presence_penalty": "presence_penaltyMax",
        "frequency_penalty": "frequency_penaltyMax",
        "top_p": "top_pMax",
        "top_k": "top_kMax"
    }

    constrained_params = {}
    for key, value in params.items():
        max_key = options_map.get(key)
        if (max_key and 
            max_key in model_config["opt_max"] and 
            value is not None):
            constrained_params[key] = min(value, model_config["opt_max"][max_key])

    return constrained_params


# API client class
class ApiClient:
    def __init__(self, model_id: str, request_id: str = ""):
        if model_id not in CONFIG["MODEL_CONFIG"]:
            raise ValueError(f"Unsupported model: {model_id}")
        self.model_config = CONFIG["MODEL_CONFIG"][model_id]
        self.request_id = request_id

    def process_message_content(self, content: Any) -> Optional[str]:
        """Process message content to extract text."""
        if isinstance(content, str):
            return content
        if isinstance(content, list):
            return "\n".join([item.get("text", "") for item in content if item.get("type") == "text"])
        if isinstance(content, dict):
            return content.get("text")
        return None

    async def prepare_chat_request(self, request: Dict[str, Any], config: Optional[Dict[str, Any]]) -> Dict[str, Any]:
        """Prepare chat request for E2B API."""
        logger.info(f"[{self.request_id}] Preparing chat request, model: {self.model_config['name']}, messages count: {len(request.get('messages', []))}")
        
        opt_config = config or {"model": self.model_config["id"]}
        transformed_messages = await self.transform_messages(request)
        
        logger.info(f"[{self.request_id}] Transformed messages count: {len(transformed_messages)}")
        
        return {
            "userID": generate_uuid(),
            "messages": transformed_messages,
            "template": {
                "text": {
                    "name": CONFIG["MODEL_PROMPT"],
                    "lib": [""],
                    "file": "pages/ChatWithUsers.txt",
                    "instructions": self.model_config["Systemprompt"],
                    "port": None
                }
            },
            "model": {
                "id": self.model_config["id"],
                "provider": self.model_config["provider"],
                "providerId": self.model_config["providerId"],
                "name": self.model_config["name"],
                "multiModal": self.model_config["multiModal"]
            },
            "config": opt_config
        }

    async def transform_messages(self, request: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Transform and merge messages for E2B API."""
        messages = request.get("messages", [])
        merged_messages = []
        
        for current in messages:
            current_content = self.process_message_content(current.get("content"))
            if current_content is None:
                continue
                
            if (merged_messages and 
                current.get("role") == merged_messages[-1].get("role")):
                last_content = self.process_message_content(merged_messages[-1].get("content"))
                if last_content is not None:
                    merged_messages[-1]["content"] = f"{last_content}\n{current_content}"
                    continue
                    
            merged_messages.append(current)
        
        result = []
        for msg in merged_messages:
            role = msg.get("role", "")
            content = msg.get("content", "")
            
            if role in ["system", "user"]:
                result.append({
                    "role": "user",
                    "content": [{"type": "text", "text": content}]
                })
            elif role == "assistant":
                result.append({
                    "role": "assistant",
                    "content": [{"type": "text", "text": content}]
                })
            else:
                result.append(msg)
                
        return result


# Response handler class
class ResponseHandler:
    @staticmethod
    async def handle_stream_response(chat_message: str, model: str, request_id: str):
        """Handle streaming response."""
        logger.info(f"[{request_id}] Handling streaming response, content length: {len(chat_message)} characters")
        
        async def generate():
            index = 0
            while index < len(chat_message):
                # Simulate chunking similar to the Deno implementation
                chunk_size = min(15 + int(15 * (0.5 - (0.5 * (index / len(chat_message))))), 30)
                chunk = chat_message[index:index + chunk_size]
                
                event_data = {
                    "id": generate_uuid(),
                    "object": "chat.completion.chunk",
                    "created": int(time.time()),
                    "model": model,
                    "choices": [{
                        "index": 0,
                        "delta": {"content": chunk},
                        "finish_reason": "stop" if index + chunk_size >= len(chat_message) else None
                    }]
                }
                
                yield f"data: {json.dumps(event_data)}\n\n"
                
                index += chunk_size
                await asyncio.sleep(0.05)  # 50ms delay between chunks
            
            yield "data: [DONE]\n\n"
            logger.info(f"[{request_id}] Streaming response completed")
        
        return StreamingResponse(
            generate(),
            media_type="text/event-stream",
            headers={
                "Cache-Control": "no-cache",
                "Connection": "keep-alive",
            }
        )

    @staticmethod
    async def handle_normal_response(chat_message: str, model: str, request_id: str):
        """Handle normal (non-streaming) response."""
        logger.info(f"[{request_id}] Handling normal response, content length: {len(chat_message)} characters")
        
        response_data = {
            "id": generate_uuid(),
            "object": "chat.completion",
            "created": int(time.time()),
            "model": model,
            "choices": [{
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": chat_message
                },
                "finish_reason": "stop"
            }],
            "usage": None
        }
        
        return JSONResponse(content=response_data)


# Pydantic models for request validation
class Message(BaseModel):
    role: str
    content: Union[str, List[Dict[str, Any]], Dict[str, Any]]


class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[Message]
    temperature: Optional[float] = None
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = None
    frequency_penalty: Optional[float] = None
    top_p: Optional[float] = None
    top_k: Optional[int] = None
    stream: Optional[bool] = False


# Create FastAPI app
app = FastAPI(title="E2B API Proxy")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Mount static files directory
app.mount("/static", StaticFiles(directory="static"), name="static")


# Dependency for API key validation
async def verify_api_key(request: Request):
    auth_header = request.headers.get("authorization")
    if not auth_header:
        raise HTTPException(
            status_code=status.HTTP_401_UNAUTHORIZED,
            detail="Missing API key"
        )
    
    token = auth_header.replace("Bearer ", "")
    if token != CONFIG["API"]["API_KEY"]:
        logger.error(f"Authentication failed, provided token: {token[:8]}...")
        raise HTTPException(
            status_code=status.HTTP_401_UNAUTHORIZED,
            detail="Invalid API key"
        )
    
    return token


# API endpoints
@app.get("/hf/v1/models")
async def get_models():
    """Get available models."""
    logger.info("Getting model list")
    
    models = [
        {
            "id": model_id,
            "object": "model",
            "created": int(time.time()),
            "owned_by": "e2b"
        }
        for model_id in CONFIG["MODEL_CONFIG"].keys()
    ]
    
    logger.info(f"Model list returned successfully, model count: {len(models)}")
    return {"object": "list", "data": models}


@app.post("/hf/v1/chat/completions")
async def chat_completions(
    request: ChatCompletionRequest,
    api_key: str = Depends(verify_api_key)
):
    """Handle chat completions."""
    request_id = generate_uuid()
    logger.info(f"[{request_id}] Processing chat completion request")
    
    try:
        logger.info(f"[{request_id}] User request body:", {
            "model": request.model,
            "messages_count": len(request.messages),
            "stream": request.stream,
            "temperature": request.temperature,
            "max_tokens": request.max_tokens
        })
        
        # Configure options based on model limits
        config_options = await config_opt(
            {
                "temperature": request.temperature,
                "max_tokens": request.max_tokens,
                "presence_penalty": request.presence_penalty,
                "frequency_penalty": request.frequency_penalty,
                "top_p": request.top_p,
                "top_k": request.top_k
            },
            CONFIG["MODEL_CONFIG"][request.model]
        )
        
        # Prepare request for E2B API
        api_client = ApiClient(request.model, request_id)
        request_payload = await api_client.prepare_chat_request(
            request.dict(),
            config_options
        )
        
        logger.info(f"[{request_id}] Sending request to E2B:", {
            "model": request_payload["model"]["name"],
            "messages_count": len(request_payload["messages"]),
            "config": request_payload["config"]
        })
        
        # Send request to E2B API
        fetch_start_time = time.time()
        async with httpx.AsyncClient() as client:
            fetch_response = await client.post(
                f"{CONFIG['API']['BASE_URL']}/api/chat",
                headers=CONFIG["DEFAULT_HEADERS"],
                json=request_payload,
                timeout=60.0
            )
        fetch_end_time = time.time()

        print(fetch_response.text)
        
        # Process response
        response_data = fetch_response.json()
        logger.info(
            f"[{request_id}] Received E2B response: {fetch_response.status_code}, "
            f"time: {(fetch_end_time - fetch_start_time) * 1000:.0f}ms",
            {
                "status": fetch_response.status_code,
                "has_code": bool(response_data.get("code")),
                "has_text": bool(response_data.get("text")),
                "response_preview": (response_data.get("code", "") or 
                                    response_data.get("text", "") or 
                                    "")[:100] + "..."
            }
        )
        
        # Extract message content
        chat_message = (
            response_data.get("code", "").strip() or
            response_data.get("text", "").strip() or
            (response_data.strip() if isinstance(response_data, str) else None)
        )

        #chat_message = fetch_response.text
        
        if not chat_message:
            logger.error(f"[{request_id}] E2B did not return a valid response")
            raise ValueError("No response from upstream service")
        
        # Return response based on streaming preference
        if request.stream:
            return await ResponseHandler.handle_stream_response(
                chat_message,
                request.model,
                request_id
            )
        else:
            return await ResponseHandler.handle_normal_response(
                chat_message,
                request.model,
                request_id
            )
            
    except Exception as e:
        logger.error(f"[{request_id}] Error processing request:", exc_info=e)
        
        return JSONResponse(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            content={
                "error": {
                    "message": f"{str(e)} Request failed, possibly due to context limit exceeded or other error. Please try again later.",
                    "type": "server_error",
                    "param": None,
                    "code": None
                }
            }
        )


@app.get("/", response_class=HTMLResponse)
async def root():
    """Root endpoint that serves the HTML UI."""
    with open("static/index.html", "r") as f:
        html_content = f.read()
    return HTMLResponse(content=html_content)


@app.get("/health")
async def health_check():
    """Health check endpoint for Hugging Face."""
    return {"status": "ok", "message": "E2B API Proxy is running"}


if __name__ == "__main__":
    import uvicorn
    import os
    port = int(os.environ.get("PORT", 7860))
    uvicorn.run("app:app", host="0.0.0.0", port=port, reload=True)