Spaces:
Runtime error
Runtime error
File size: 2,272 Bytes
d3a1278 5e250bb d3a1278 79081f5 0eea78e d3a1278 0eea78e 5e250bb 30fc2e2 5e250bb 0eea78e 2382d71 5e250bb 118351d 79081f5 c0b4d8a 79081f5 2382d71 f4bce7b 48f0586 038de77 48f0586 2382d71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import os
from pathlib import Path
import streamlit as st
from transformers import pipeline
from dotenv import load_dotenv
from langchain import PromptTemplate, LLMChain, OpenAI
import requests
if Path(".env").is_file():
load_dotenv(".env")
st.set_page_config(layout="wide")
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
def img2Text(url):
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
text = image_to_text(url)[0]["generated_text"]
print(text)
return text
#llm
def generate_story(scenario):
template = """
You are a story teller;
You can generate a short story based on a simple narrative, the story should be no momre than 20 words;
CONTEXT: {scenario}
STORY:
"""
prompt = PromptTemplate(template=template,input_variables=["scenario"])
story_llm = LLMChain(llm=OpenAI(
model_name="gpt-3.5-turbo", temperature=1), prompt=prompt, verbose=True)
story = story_llm.predict(scenario=scenario)
print(story)
return story
#textToSpeech
def text2Speech(story) :
API_URL = "https://api-inference.huggingface.co/models/microsoft/speecht5_tts"
headers = {"Authorization": "Bearer {HF_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": story,
})
with open('audio.flac','wb') as file:
file.write(output.content)
def main()
st.set_page_config(page_title="Image to Short Story", page_icon="")
st.header("Turn img into Audio Story")
uploaded_file = st.file.uploader("Choose an image(jpg type)", type="jpg")
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption= 'Uploaded Image.',
use_column_width=True)
scenario = img2Text(uploaded_file.name)
story = generate_story(scenario)
text2Speech(story)
with st.expander("scenario")
st.write(scenario)
with st.expander("story")
st.write(story)
st.audio("audio.flac")
if _name_ == '_main_';
main() |