Spaces:
Runtime error
Runtime error
import os | |
from pathlib import Path | |
import streamlit as st | |
from transformers import pipeline | |
from dotenv import load_dotenv | |
from langchain import PromptTemplate, LLMChain, OpenAI | |
import requests | |
if Path(".env").is_file(): | |
load_dotenv(".env") | |
st.set_page_config(layout="wide") | |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
def img2Text(url): | |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
text = image_to_text(url)[0]["generated_text"] | |
print(text) | |
return text | |
#llm | |
def generate_story(scenario): | |
template = """ | |
You are a story teller; | |
You can generate a short story based on a simple narrative, the story should be no momre than 20 words; | |
CONTEXT: {scenario} | |
STORY: | |
""" | |
prompt = PromptTemplate(template=template,input_variables=["scenario"]) | |
story_llm = LLMChain(llm=OpenAI( | |
model_name="gpt-3.5-turbo", temperature=1), prompt=prompt, verbose=True) | |
story = story_llm.predict(scenario=scenario) | |
print(story) | |
return story | |
#textToSpeech | |
def text2Speech(story) : | |
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" | |
headers = {"Authorization": "Bearer {HF_TOKEN}"} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
with open('audio.flac','wb') as file: | |
file.write(response.content) | |
return response.json() | |
output = query({ | |
"inputs": story, | |
}) | |
def main() : | |
st.header("Turn img into Audio Story") | |
uploaded_file = st.file_uploader("Choose an image(jpg type)", type="jpg") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption= 'Uploaded Image.', | |
use_column_width=True) | |
scenario = img2Text(uploaded_file.name) | |
with st.expander("scenario"): | |
st.write(scenario) | |
story = generate_story(scenario) | |
with st.expander("story"): | |
st.write(story) | |
text2Speech(story) | |
st.audio("audio.flac") | |
if __name__ == "__main__": | |
main() |