Image-to-Story / app.py
neha-ai-playground's picture
Update app.py
8362c2f
import os
from pathlib import Path
import streamlit as st
from transformers import pipeline
from dotenv import load_dotenv
from langchain import PromptTemplate, LLMChain, OpenAI
import requests
if Path(".env").is_file():
load_dotenv(".env")
st.set_page_config(layout="wide")
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
def img2Text(url):
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
text = image_to_text(url)[0]["generated_text"]
print(text)
return text
#llm
def generate_story(scenario):
template = """
You are a story teller;
You can generate a short story based on a simple narrative, the story should be no momre than 20 words;
CONTEXT: {scenario}
STORY:
"""
prompt = PromptTemplate(template=template,input_variables=["scenario"])
story_llm = LLMChain(llm=OpenAI(
model_name="gpt-3.5-turbo", temperature=1), prompt=prompt, verbose=True)
story = story_llm.predict(scenario=scenario)
print(story)
return story
#textToSpeech
def text2Speech(story) :
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
headers = {"Authorization": "Bearer {HF_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
with open('audio.flac','wb') as file:
file.write(response.content)
return response.json()
output = query({
"inputs": story,
})
def main() :
st.header("Turn img into Audio Story")
uploaded_file = st.file_uploader("Choose an image(jpg type)", type="jpg")
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption= 'Uploaded Image.',
use_column_width=True)
scenario = img2Text(uploaded_file.name)
with st.expander("scenario"):
st.write(scenario)
story = generate_story(scenario)
with st.expander("story"):
st.write(story)
text2Speech(story)
st.audio("audio.flac")
if __name__ == "__main__":
main()