import os from pathlib import Path import streamlit as st from transformers import pipeline from dotenv import load_dotenv from langchain import PromptTemplate, LLMChain, OpenAI import requests if Path(".env").is_file(): load_dotenv(".env") st.set_page_config(layout="wide") HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") def img2Text(url): image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") text = image_to_text(url)[0]["generated_text"] st.subheader("Caption :") st.subheader(text) return text #llm def generate_story(scenario): template = """ You are a story teller; You can generate a short story based on a simple narrative, the story should be no momre than 20 words; CONTEXT: {scenario} STORY: """ prompt = PromptTemplate(template=template,input_variables=["scenario"]) story_llm = LLMChain(llm=OpenAI( model_name="gpt-3.5-turbo", temperature=1), prompt=prompt, verbose=True) story = story_llm.predict(scenario=scenario) st.subheader("Story :") st.subheader(story) return story scenario = img2Text("photo.jpg") story = generate_story(scenario)