Spaces:
Runtime error
Runtime error
Commit
·
43fa18d
1
Parent(s):
5de747a
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,8 @@ from pathlib import Path
|
|
3 |
import streamlit as st
|
4 |
from transformers import pipeline
|
5 |
from dotenv import load_dotenv
|
6 |
-
from langchain import PromptTemplate,
|
|
|
7 |
if Path(".env").is_file():
|
8 |
load_dotenv(".env")
|
9 |
st.set_page_config(layout="wide")
|
@@ -12,29 +13,29 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
12 |
def img2Text(url):
|
13 |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
14 |
text = image_to_text(url)
|
15 |
-
st.
|
16 |
st.subheader(text)
|
17 |
print(text)
|
18 |
return text
|
19 |
-
img2Text(
|
20 |
|
21 |
#llm
|
22 |
def generate_story(scenario):
|
23 |
template = """
|
24 |
You are a story teller;
|
25 |
-
You can generate a short story based on a simple narrative, the story should be no
|
26 |
|
27 |
CONTEXT: {scenario}
|
28 |
STORY:
|
29 |
"""
|
30 |
|
31 |
prompt = PromptTemplate(template=template,input_variables=["scenario"])
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
story =
|
37 |
-
st.
|
38 |
st.subheader(story)
|
39 |
print(story)
|
40 |
return story
|
|
|
3 |
import streamlit as st
|
4 |
from transformers import pipeline
|
5 |
from dotenv import load_dotenv
|
6 |
+
from langchain import PromptTemplate, HuggingFaceHub, LLMChain
|
7 |
+
|
8 |
if Path(".env").is_file():
|
9 |
load_dotenv(".env")
|
10 |
st.set_page_config(layout="wide")
|
|
|
13 |
def img2Text(url):
|
14 |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
15 |
text = image_to_text(url)
|
16 |
+
st.subheader("Caption :")
|
17 |
st.subheader(text)
|
18 |
print(text)
|
19 |
return text
|
20 |
+
img2Text("photo.png")
|
21 |
|
22 |
#llm
|
23 |
def generate_story(scenario):
|
24 |
template = """
|
25 |
You are a story teller;
|
26 |
+
You can generate a short story based on a simple narrative, the story should be no momre than 20 words;
|
27 |
|
28 |
CONTEXT: {scenario}
|
29 |
STORY:
|
30 |
"""
|
31 |
|
32 |
prompt = PromptTemplate(template=template,input_variables=["scenario"])
|
33 |
+
llm_chain = LLMChain(prompt=prompt,
|
34 |
+
llm=HuggingFaceHub(repo_id="google/flan-t5-xl",
|
35 |
+
model_kwargs={"temperature":0,
|
36 |
+
"max_length":64}))
|
37 |
+
story =llm_chain.run(scenario)
|
38 |
+
st.subheader("Story :")
|
39 |
st.subheader(story)
|
40 |
print(story)
|
41 |
return story
|