File size: 6,099 Bytes
80cb407
268f7eb
8a79172
80cb407
 
 
 
 
 
268f7eb
80cb407
 
 
 
 
451dc19
971594f
80cb407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268f7eb
 
816f4f3
 
268f7eb
 
 
 
 
 
3347b23
 
 
816f4f3
3347b23
268f7eb
 
 
 
 
 
 
 
 
 
 
a45f54d
 
268f7eb
a45f54d
268f7eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9cc6c9
268f7eb
 
 
 
451dc19
268f7eb
 
451dc19
 
80cb407
 
 
 
 
 
 
 
 
 
 
 
451dc19
80cb407
 
 
 
 
 
20332fc
 
0080f77
8a79172
80cb407
 
268f7eb
20332fc
80cb407
 
268f7eb
80cb407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268f7eb
 
80cb407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from flask import Flask, render_template, request
from faster_whisper import WhisperModel
import tempfile
import os
import time
import torch
import numpy as np
import requests
from tqdm import tqdm
from transformers import BertTokenizer
from model.multi_class_model import MultiClassModel  # Adjust if needed

app = Flask(__name__)

# === CONFIG ===
# CHECKPOINT_URL = "https://github.com/michael2002porto/bert_classification_indonesian_song_lyrics/releases/download/finetuned_checkpoints/original_split_synthesized.ckpt"
CHECKPOINT_URL = "https://huggingface.co/nenafem/original_split_synthesized/resolve/main/original_split_synthesized.ckpt?download=true"
CHECKPOINT_PATH = "final_checkpoint/original_split_synthesized.ckpt"
AGE_LABELS = ["semua usia", "anak", "remaja", "dewasa"]

# === FUNCTION TO DOWNLOAD CKPT IF NEEDED ===
def download_checkpoint_if_needed(url, save_path):
    if not os.path.exists(save_path):
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        print(f"📥 Downloading model checkpoint from {url}...")
        response = requests.get(url, stream=True, timeout=10)
        if response.status_code == 200:
            total = int(response.headers.get("content-length", 0))
            with open(save_path, 'wb') as f, tqdm(total=total, unit='B', unit_scale=True, desc="Downloading") as pbar:
                for chunk in response.iter_content(1024):
                    f.write(chunk)
                    pbar.update(len(chunk))
            print("✅ Checkpoint downloaded!")
        else:
            raise Exception(f"❌ Failed to download: {response.status_code}")

# === INITIAL SETUP: Download & Load Model ===
download_checkpoint_if_needed(CHECKPOINT_URL, CHECKPOINT_PATH)

# Load tokenizer
tokenizer = BertTokenizer.from_pretrained('indolem/indobert-base-uncased')

# Load model from checkpoint
model = MultiClassModel.load_from_checkpoint(
    CHECKPOINT_PATH,
    n_out=4,
    dropout=0.3,
    lr=1e-5
)
model.eval()

# === INITIAL SETUP: Faster Whisper ===
# https://github.com/SYSTRAN/faster-whisper
# faster_whisper_model_size = "large-v3"
faster_whisper_model_size = "turbo"

# Run on GPU with FP16
# model = WhisperModel(model_size, device="cuda", compute_type="float16")
# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
faster_whisper_model = WhisperModel(
    faster_whisper_model_size,
    device="cpu",
    compute_type="int8"
)


def faster_whisper(temp_audio_path):
    segments, info = faster_whisper_model.transcribe(
        temp_audio_path,
        language="id",
        beam_size=1    # Lower beam_size, faster but may miss words
    )

    print("Detected language '%s' with probability %f" % (info.language, info.language_probability))

    # for segment in segments:
    #     print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

    return " ".join(segment.text for segment in segments)


def bert_predict(input_lyric):
    encoding = tokenizer.encode_plus(
        input_lyric,
        add_special_tokens=True,
        max_length=512,
        return_token_type_ids=True,
        padding="max_length",
        return_attention_mask=True,
        return_tensors='pt',
    )

    with torch.no_grad():
        prediction = model(
            encoding["input_ids"],
            encoding["attention_mask"],
            encoding["token_type_ids"]
        )

    logits = prediction
    probabilities = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
    predicted_class = np.argmax(probabilities)
    predicted_label = AGE_LABELS[predicted_class]

    prob_results = [(label, f"{prob:.4f}") for label, prob in zip(AGE_LABELS, probabilities)]
    return predicted_label, prob_results


# === ROUTES ===

@app.route('/', methods=['GET'])
def index():
    return render_template('index.html')


@app.route('/transcribe', methods=['POST'])
def transcribe():
    try:
        # Load Whisper with Indonesian language support (large / turbo)
        # https://github.com/openai/whisper
        # whisper_model = whisper.load_model("large")

        # Start measuring time
        start_time = time.time()

        audio_file = request.files['file']
        if audio_file:
            # Save uploaded audio to temp file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
                temp_audio.write(audio_file.read())
                temp_audio_path = temp_audio.name

            # Step 1: Transcribe
            transcribed_text = faster_whisper(temp_audio_path)
            os.remove(temp_audio_path)

            # Step 2: BERT Prediction
            predicted_label, prob_results = bert_predict(transcribed_text)

            # Stop timer
            end_time = time.time()
            total_time = end_time - start_time
            formatted_time = f"{total_time:.2f} seconds"

            return render_template(
                'transcribe.html',
                task=transcribed_text,
                prediction=predicted_label,
                probabilities=prob_results,
                total_time=formatted_time
            )

    except Exception as e:
        print("Error:", e)
        return str(e)


@app.route('/predict-text', methods=['POST'])
def predict_text():
    try:
        user_lyrics = request.form.get('lyrics', '').strip()

        if not user_lyrics:
            return "No lyrics provided.", 400

        # Start timer
        start_time = time.time()

        # Step 1: BERT Prediction
        predicted_label, prob_results = bert_predict(user_lyrics)

        # End timer
        end_time = time.time()
        total_time = f"{end_time - start_time:.2f} seconds"

        return render_template(
            'transcribe.html',
            task=user_lyrics,
            prediction=predicted_label,
            probabilities=prob_results,
            total_time=total_time
        )

    except Exception as e:
        print("❌ Error in predict-text:", e)
        return str(e), 500


if __name__ == "__main__":
    app.run(debug=True)