File size: 11,388 Bytes
80cb407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import random
import sys

import torch
import torch.nn as nn

import lightning as L

from transformers import BertModel
from torchmetrics.classification import F1Score, Accuracy, Precision, Recall

class MultiClassModel(L.LightningModule):
    def __init__(self,
                 dropout,
                 n_out,
                 lr,
                 hidden_size = 768,
                 model_dim = 768,):
        super(MultiClassModel, self).__init__()

        # save all the hyperparameters
        self.save_hyperparameters()

        # seed untuk weight
        torch.manual_seed(1) # Untuk GPU
        random.seed(1) # Untuk CPU

        # inisialisasi bert
        # sudah di training terhadap dataset tertentu oleh orang di wikipedia
        self.bert = BertModel.from_pretrained('indolem/indobert-base-uncased')

        # hasil dimasukkan ke linear function
        # pre_classifier = agar weight tidak hilang ketika epoch selanjutnya. Agar weight dapat digunakan kembali
        # Disimpan di memori spesifik untuk song lyrics classification
        # di kecilkan dimensinya dari 768 -> 512
        self.pre_classifier = nn.Linear(hidden_size, model_dim)

        self.dropout = nn.Dropout(dropout)

        # n_out = jumlah label
        # jumlah label = 4 (semua usia, anak, remaja, dewasa)
        self.num_classes = n_out
        # output_layer classifier untuk merubah menjadi label
        self.output_layer = nn.Linear(model_dim, self.num_classes)
        #  Activation function / Normalisasi
        self.softmax = nn.Softmax()
                
        # Seberapa dalam rasio si model di optimize
        self.lr = lr
        
        # Persiapan benchmarking
        self.prepare_metrics()

        # menghitung loss function
        self.criterion = nn.BCEWithLogitsLoss()

    # mengambil input dari bert, pre_classifier
    def forward(self, input_ids, attention_mask, token_type_ids):
        bert_out = self.bert(
            input_ids = input_ids,
            attention_mask = attention_mask,
            token_type_ids = token_type_ids
        )

        # hidden_state = bert_out[0]
        # pooler = hidden_state[:, 0]
        # Output size (batch size = 20 baris, sequence length = 100 kata / token, hidden_size = 768 tensor jumlah vektor representation dari)
        
        # Full Output Model
        # 12 * 768
        # 12 = layer nya (Filter)
        # 768 = Probabilitas 
        # layer 12

        # dimensi pooler output = 1 * 768
        bert_out = bert_out.pooler_output   #ambil output layer terakhir
        out = self.dropout(bert_out)  #menghilangkan memory

        # pre classifier untuk mentransfer wight output ke epch selanjuntya
        out = self.pre_classifier(out)     #pindah ke memori khusus klasifikasi
        
        # kontrol hasil pooler min -1 max 1
        # pooler = torch.nn.Tanh()(pooler)
        
        # 0.02312312412413131 -> 0.023412 (normalisasi) -> 0 -> 1
        # -0.3124211 -> 0.00012
        out = self.output_layer(out)    # output_layer classifier untuk memprojeksikan hasil pooler (768) ke jumlah label (4)
        out = self.softmax(out)     #menstabilkan sehingga 0 - 1

        # pooler = self.dropout(pooler)

        return out

    def prepare_metrics(self):
        task = "multiclass"
        
        self.acc_metrics = Accuracy(task = task, num_classes = self.num_classes)
        
        self.f1_metrics_micro = F1Score(task = task, num_classes = self.num_classes, average = "micro")
        self.f1_metrics_macro = F1Score(task = task, num_classes = self.num_classes, average = "macro")
        self.f1_metrics_weighted = F1Score(task = task, num_classes = self.num_classes, average = "weighted")
        
        self.prec_metrics_micro = Precision(task = task, num_classes = self.num_classes, average = "micro")
        self.prec_metrics_macro = Precision(task = task, num_classes = self.num_classes, average = "macro")
        self.prec_metrics_weighted = Precision(task = task, num_classes = self.num_classes, average = "weighted")
        
        self.recall_metrics_micro = Recall(task = task, num_classes = self.num_classes, average = "micro")
        self.recall_metrics_macro = Recall(task = task, num_classes = self.num_classes, average = "macro")
        self.recall_metrics_weighted = Recall(task = task, num_classes = self.num_classes, average = "weighted")

        # to make use of all the outputs
        self.training_step_output = []
        self.validation_step_output = []
        self.test_step_output = []
        
    def benchmarking_step(self, pred, target):
        '''
        output pred / target = 
        [
            [0.001, 0.80],
            [0.8, 0.0001],
            [0.8, 0.0001],
            [0.8, 0.0001],
            [0.8, 0.0001]
        ]
        
        y_pred -> [1, 0, 0, 0, 0]
        '''
        
        pred = torch.argmax(pred, dim = 1)
        target = torch.argmax(target, dim = 1)
        
        metrics = {}
        metrics["accuracy"] = self.acc_metrics(pred, target)
        metrics["f1_micro"] = self.f1_metrics_micro(pred, target)
        metrics["f1_macro"] = self.f1_metrics_macro(pred, target)
        metrics["f1_weighted"] = self.f1_metrics_weighted(pred, target)
        metrics["prec_micro"] = self.prec_metrics_micro(pred, target)
        metrics["prec_macro"] = self.prec_metrics_macro(pred, target)
        metrics["prec_weighted"] = self.prec_metrics_weighted(pred, target)
        metrics["recall_micro"] = self.recall_metrics_micro(pred, target)
        metrics["recall_macro"] = self.recall_metrics_macro(pred, target)
        metrics["recall_weighted"] = self.recall_metrics_weighted(pred, target)
        
        return metrics

    def configure_optimizers(self):
        # di dalam parameter adam, parameters untuk mengambil kesuluruhan input yg di atas

        # Fungsi adam 
        # Tranfer epoch 1 ke epoch 2
        # Mengontrol (efisiensi) loss
        # Proses training lebih cepat
        # Tidak memakan memori berlebih
        #Learning rate semakin tinggi maka hasil itunya semakin besar
        optimizer = torch.optim.Adam(self.parameters(), lr = self.lr)   #untuk menjaga training model improve
        return optimizer

    def training_step(self, batch, batch_idx):
        x_input_ids, x_token_type_ids, x_attention_mask, y = batch

        # Ke tiga parameter di input dan di olah oleh method / function forward()
        y_pred = self(
            input_ids = x_input_ids,
            attention_mask = x_attention_mask,
            token_type_ids = x_token_type_ids
        )

        #y_pred semakin salah, maka semakin tinggi loss
        loss = self.criterion(y_pred, target = y.float())
        
        metrics = self.benchmarking_step(pred = y_pred, target = y)     #tahu skor
        metrics["loss"] = loss
        metrics_loss = loss
        
        self.training_step_output.append(metrics)
        self.log_dict({"train_loss": metrics_loss}, prog_bar = True, on_epoch = True)
        
        return loss

    def validation_step(self, batch, batch_idx):
        x_input_ids, x_token_type_ids, x_attention_mask, y = batch

        # Ke tiga parameter di input dan di olah oleh method / function forward()
        y_pred = self(
            input_ids = x_input_ids,
            attention_mask = x_attention_mask,
            token_type_ids = x_token_type_ids
        )

        #y_pred semakin salah, maka semakin tinggi loss
        loss = self.criterion(y_pred, target = y.float())
        
        metrics = self.benchmarking_step(pred = y_pred, target = y)     #tahu skor
        metrics["loss"] = loss
        metrics_loss = loss
        
        self.validation_step_output.append(metrics)
        self.log_dict({"val_loss": metrics_loss}, prog_bar = True, on_epoch = True)
        
        return loss

    def test_step(self, batch, batch_idx):
        x_input_ids, x_token_type_ids, x_attention_mask, y = batch

        # Ke tiga parameter di input dan di olah oleh method / function forward()
        y_pred = self(
            input_ids = x_input_ids,
            attention_mask = x_attention_mask,
            token_type_ids = x_token_type_ids
        )

        #y_pred semakin salah, maka semakin tinggi loss
        loss = self.criterion(y_pred, target = y.float())
        
        metrics = self.benchmarking_step(pred = y_pred, target = y)     #tahu skor
        metrics["loss"] = loss
        
        self.test_step_output.append(metrics)
        self.log_dict(metrics, prog_bar = True, on_epoch = True)
        
        return loss

    # def predict_step(self, batch, batch_idx):
    #     # Tidak ada transfer weight
    #     x_input_ids, x_token_type_ids, x_attention_mask, y = batch

    #     out = self(input_ids = x_input_ids,
    #                attention_mask = x_attention_mask,
    #                token_type_ids = x_token_type_ids)
    #     # Ke tiga parameter di input dan di olah oleh method / function forward

    #     pred = out.argmax(1).cpu()
    #     true = y.argmax(1).cpu()

    #     outputs = {"predictions": out, "labels": y}
    #     self.predict_step_outputs.append(outputs)

    #     # return [pred, true]
    #     return outputs

    # def on_train_epoch_end(self):
    #     labels = []
    #     predictions = []

    #     for output in self.training_step_outputs:
    #         for out_lbl in output["labels"].detach().cpu():
    #             labels.append(out_lbl)
    #         for out_pred in output["predictions"].detach().cpu():
    #             predictions.append(out_pred)

    #     # argmax(dim=1) = convert one-hot encoded labels to class indices
    #     labels = torch.stack(labels).int().argmax(dim=1)
    #     predictions = torch.stack(predictions).argmax(dim=1)

    #     print("\n")
    #     print("labels = ", labels)
    #     print("predictions = ", predictions)
    #     print("num_classes = ", self.num_classes)

    #     # Hitung akurasi
    #     accuracy = Accuracy(task = "multiclass", num_classes = self.num_classes)
    #     acc = accuracy(predictions, labels)

    #     # Print Akurasinya
    #     print("Overall Training Accuracy : ", acc)
    #     print("\n")
    #     # sys.exit()

    #     # free memory
    #     self.training_step_outputs.clear()

    # def on_predict_epoch_end(self):
    #     labels = []
    #     predictions = []

    #     for output in self.predict_step_outputs:
    #         # print(output[0]["predictions"][0])
    #         # print(len(output))
    #         # break
    #         for out_lbl in output["labels"].detach().cpu():
    #             labels.append(out_lbl)
    #         for out_pred in output["predictions"].detach().cpu():
    #             predictions.append(out_pred)

    #     # argmax(dim=1) = convert one-hot encoded labels to class indices
    #     labels = torch.stack(labels).int().argmax(dim=1)
    #     predictions = torch.stack(predictions).argmax(dim=1)

    #     print("\n")
    #     print("labels = ", labels)
    #     print("predictions = ", predictions)
    #     print("num_classes = ", self.num_classes)

    #     accuracy = Accuracy(task = "multiclass", num_classes = self.num_classes)
    #     acc = accuracy(predictions, labels)
    #     print("Overall Testing Accuracy : ", acc)
    #     print("\n")
    #     # sys.exit()

    #     # free memory
    #     self.predict_step_outputs.clear()