File size: 13,416 Bytes
0c67b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268f7eb
687e763
8a79172
80cb407
0c67b3e
80cb407
 
 
 
 
268f7eb
0c67b3e
 
 
 
 
80cb407
 
 
 
451dc19
971594f
80cb407
aae98e8
0c67b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80cb407
 
 
 
 
 
 
 
 
0c67b3e
 
 
80cb407
 
 
 
 
 
 
0c67b3e
80cb407
0c67b3e
80cb407
 
687e763
aae98e8
687e763
80cb407
0c67b3e
80cb407
 
 
0c67b3e
80cb407
 
 
268f7eb
 
816f4f3
 
268f7eb
 
 
 
 
 
3347b23
0c67b3e
3347b23
268f7eb
 
 
 
 
 
0c67b3e
268f7eb
 
0c67b3e
 
 
 
268f7eb
a45f54d
 
268f7eb
a45f54d
268f7eb
 
 
 
 
 
 
0c67b3e
268f7eb
 
 
0c67b3e
268f7eb
 
 
 
 
 
0c67b3e
268f7eb
d9cc6c9
268f7eb
 
 
 
451dc19
0c67b3e
 
 
268f7eb
451dc19
 
80cb407
 
0c67b3e
 
80cb407
0c67b3e
80cb407
 
0c67b3e
80cb407
 
 
 
451dc19
80cb407
 
 
 
0c67b3e
80cb407
20332fc
 
0080f77
8a79172
80cb407
 
687e763
aad2b2d
687e763
aad2b2d
687e763
 
 
 
 
 
 
20332fc
80cb407
 
268f7eb
80cb407
 
 
 
 
 
0c67b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80cb407
0c67b3e
80cb407
 
 
0c67b3e
80cb407
 
 
 
 
 
 
0c67b3e
80cb407
 
0c67b3e
80cb407
 
 
 
 
 
 
268f7eb
 
80cb407
 
 
0c67b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80cb407
 
0c67b3e
80cb407
 
 
0c67b3e
80cb407
 
 
 
 
 
 
0c67b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc3627b
0c67b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80cb407
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
from flask import (
    Flask,
    render_template,
    request,
    url_for,
    redirect,
    flash,
    get_flashed_messages,
)
from flask_login import (
    LoginManager,
    login_user,
    logout_user,
    login_required,
    current_user,
)
from flask_sqlalchemy import SQLAlchemy
from flask_login import UserMixin
from werkzeug.security import generate_password_hash, check_password_hash
from faster_whisper import WhisperModel
from groq import Groq
import tempfile
import os
import datetime
import time
import torch
import numpy as np
import requests
from tqdm import tqdm
from transformers import BertTokenizer
from model.multi_class_model import MultiClassModel

# from model.database import db, User
from sqlalchemy.exc import OperationalError
from sqlalchemy import inspect

app = Flask(__name__)

# === CONFIG ===
# CHECKPOINT_URL = "https://github.com/michael2002porto/bert_classification_indonesian_song_lyrics/releases/download/finetuned_checkpoints/original_split_synthesized.ckpt"
CHECKPOINT_URL = "https://huggingface.co/nenafem/original_split_synthesized/resolve/main/original_split_synthesized.ckpt?download=true"
CHECKPOINT_PATH = "final_checkpoint/original_split_synthesized.ckpt"
AGE_LABELS = ["semua usia", "anak", "remaja", "dewasa"]
DATABASE_URI = "postgresql://postgres.tcqmmongiztvqkxxebnc:[email protected]:6543/postgres"

# === CONNECT DATABASE ===
app.config["SQLALCHEMY_DATABASE_URI"] = DATABASE_URI
app.config["SECRET_KEY"] = "I1Nnj0H72Z3mXWcp"

# init extensions
db = SQLAlchemy(app)
login_manager = LoginManager(app)
login_manager.login_view = "login"

try:
    db.session.execute("SELECT 1")
    print("✅ Database connected successfully.")
except OperationalError as e:
    print(f"❌ Database connection failed: {e}")


def show_schema_info():
    inspector = inspect(db.engine)

    # Get current schema (by default it's 'public' unless set explicitly)
    current_schema = db.engine.url.database
    all_schemas = inspector.get_schema_names()
    public_tables = inspector.get_table_names(schema="public")

    return {
        "current_schema": current_schema,
        "available_schemas": all_schemas,
        "public_tables": public_tables,
    }


class User(db.Model, UserMixin):
    __tablename__ = "user"

    id = db.Column(db.Integer, primary_key=True)
    email = db.Column(db.String(255), nullable=False)
    password = db.Column(db.String(255))
    created_date = db.Column(db.DateTime, default=datetime.datetime.now())

    history = db.relationship("History", backref="user", lazy=True)


class History(db.Model):
    __tablename__ = "history"

    id = db.Column(db.Integer, primary_key=True)
    lyric = db.Column(db.Text, nullable=False)
    predicted_label = db.Column(db.String(255), nullable=False)

    children_prob = db.Column(db.Float)
    adolescents_prob = db.Column(db.Float)
    adults_prob = db.Column(db.Float)
    all_ages_prob = db.Column(db.Float)

    processing_time = db.Column(db.Float)  # store duration in seconds
    created_date = db.Column(db.DateTime, default=datetime.datetime.now)
    speech_to_text = db.Column(db.Boolean)

    user_id = db.Column(db.Integer, db.ForeignKey("user.id"))


# Load user for Flask-Login
@login_manager.user_loader
def load_user(user_id):
    return User.query.get(int(user_id))


# === FUNCTION TO DOWNLOAD CKPT IF NEEDED ===
def download_checkpoint_if_needed(url, save_path):
    if not os.path.exists(save_path):
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        print(f"📥 Downloading model checkpoint from {url}...")
        response = requests.get(url, stream=True, timeout=10)
        if response.status_code == 200:
            total = int(response.headers.get("content-length", 0))
            with open(save_path, "wb") as f, tqdm(
                total=total, unit="B", unit_scale=True, desc="Downloading"
            ) as pbar:
                for chunk in response.iter_content(1024):
                    f.write(chunk)
                    pbar.update(len(chunk))
            print("✅ Checkpoint downloaded!")
        else:
            raise Exception(f"❌ Failed to download: {response.status_code}")


# === INITIAL SETUP: Download & Load Model ===
print(show_schema_info())
download_checkpoint_if_needed(CHECKPOINT_URL, CHECKPOINT_PATH)

# Load groq
client = Groq(api_key="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")

# Load tokenizer
tokenizer = BertTokenizer.from_pretrained("indolem/indobert-base-uncased")

# Load model from checkpoint
model = MultiClassModel.load_from_checkpoint(
    CHECKPOINT_PATH, n_out=4, dropout=0.3, lr=1e-5
)
model.eval()

# === INITIAL SETUP: Faster Whisper ===
# https://github.com/SYSTRAN/faster-whisper
# faster_whisper_model_size = "large-v3"
faster_whisper_model_size = "turbo"

# Run on GPU with FP16
# model = WhisperModel(model_size, device="cuda", compute_type="float16")
# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
faster_whisper_model = WhisperModel(
    faster_whisper_model_size, device="cpu", compute_type="int8"
)


def faster_whisper(temp_audio_path):
    segments, info = faster_whisper_model.transcribe(
        temp_audio_path,
        language="id",
        beam_size=1,  # Lower beam_size, faster but may miss words
    )

    print(
        "Detected language '%s' with probability %f"
        % (info.language, info.language_probability)
    )

    # for segment in segments:
    #     print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

    return " ".join(segment.text for segment in segments)


def bert_predict(input_lyric):
    encoding = tokenizer.encode_plus(
        input_lyric,
        add_special_tokens=True,
        max_length=512,
        truncation=True,  # Ensures input ≤512 tokens
        return_token_type_ids=True,
        padding="max_length",
        return_attention_mask=True,
        return_tensors="pt",
    )

    with torch.no_grad():
        prediction = model(
            encoding["input_ids"],
            encoding["attention_mask"],
            encoding["token_type_ids"],
        )

    logits = prediction
    probabilities = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
    predicted_class = np.argmax(probabilities)
    predicted_label = AGE_LABELS[predicted_class]

    prob_results = [
        (label, f"{prob:.4f}") for label, prob in zip(AGE_LABELS, probabilities)
    ]
    return predicted_label, prob_results


# === ROUTES ===


@app.route("/", methods=["GET"])
def index():
    return render_template("index.html")


@app.route("/transcribe", methods=["POST"])
def transcribe():
    try:
        # Load Whisper with Indonesian language support (large / turbo)
        # https://github.com/openai/whisper
        # whisper_model = whisper.load_model("large")

        # Start measuring time
        start_time = time.time()

        audio_file = request.files["file"]
        if audio_file:
            # Save uploaded audio to temp file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
                temp_audio.write(audio_file.read())
                temp_audio_path = temp_audio.name

            # Step 1: Transcribe
            # transcribed_text = faster_whisper(temp_audio_path).strip()
            with open(temp_audio_path, "rb") as file:
                transcription = client.audio.transcriptions.create(
                    file=(temp_audio_path, file.read()),
                    model="whisper-large-v3",
                    prompt="Transkripsikan hanya bagian lirik lagu saja",
                    language="id",
                    response_format="verbose_json",
                    temperature=0,
                )
            transcribed_text = transcription.text.strip()
            os.remove(temp_audio_path)

            # Step 2: BERT Prediction
            predicted_label, prob_results = bert_predict(transcribed_text)

            # Stop timer
            end_time = time.time()
            total_time = end_time - start_time
            formatted_time = f"{total_time:.2f} seconds"

            # Insert log prediction
            new_prediction_history = History(
                lyric=transcribed_text,
                predicted_label=predicted_label,
                children_prob=prob_results[AGE_LABELS.index("anak")][1],
                adolescents_prob=prob_results[AGE_LABELS.index("remaja")][1],
                adults_prob=prob_results[AGE_LABELS.index("dewasa")][1],
                all_ages_prob=prob_results[AGE_LABELS.index("semua usia")][1],
                processing_time=round(total_time, 2),
                speech_to_text=True,
                user_id=current_user.id if current_user.is_authenticated else None,
            )
            db.session.add(new_prediction_history)
            db.session.commit()

            return render_template(
                "transcribe.html",
                task=transcribed_text,
                prediction=predicted_label,
                probabilities=prob_results,
                total_time=formatted_time,
            )

    except Exception as e:
        print("Error:", e)
        return str(e)


@app.route("/predict-text", methods=["POST"])
def predict_text():
    try:
        user_lyrics = request.form.get("lyrics", "").strip()

        if not user_lyrics:
            return "No lyrics provided.", 400

        # Start timer
        start_time = time.time()

        # Step 1: BERT Prediction
        predicted_label, prob_results = bert_predict(user_lyrics)

        # End timer
        end_time = time.time()
        total_time = end_time - start_time
        formatted_time = f"{total_time:.2f} seconds"

        # Insert log prediction
        new_prediction_history = History(
            lyric=user_lyrics,
            predicted_label=predicted_label,
            children_prob=prob_results[AGE_LABELS.index("anak")][1],
            adolescents_prob=prob_results[AGE_LABELS.index("remaja")][1],
            adults_prob=prob_results[AGE_LABELS.index("dewasa")][1],
            all_ages_prob=prob_results[AGE_LABELS.index("semua usia")][1],
            processing_time=round(total_time, 2),
            user_id=current_user.id if current_user.is_authenticated else None,
        )
        db.session.add(new_prediction_history)
        db.session.commit()

        return render_template(
            "transcribe.html",
            task=user_lyrics,
            prediction=predicted_label,
            probabilities=prob_results,
            total_time=formatted_time,
        )

    except Exception as e:
        print("❌ Error in predict-text:", e)
        return str(e), 500


@app.route("/register", methods=["GET", "POST"])
def register():
    if request.method == "POST":
        email = request.form.get("email")
        password = request.form.get("password")
        confirm_password = request.form.get("confirm-password")

        if User.query.filter_by(email=email).first():
            return render_template(
                "register.html",
                error="Email already taken!",
                email=email,
                password=password,
                confirm_password=confirm_password,
            )

        if password != confirm_password:
            return render_template(
                "register.html",
                error="Password does not match!",
                email=email,
                password=password,
                confirm_password=confirm_password,
            )

        hashed_password = generate_password_hash(password, method="pbkdf2:sha256")

        new_user = User(email=email, password=hashed_password)
        db.session.add(new_user)
        db.session.commit()

        flash(
            "Sign up successful! Please log in.", "success"
        )  # Flash the success message
        return redirect(url_for("login"))

    return render_template("register.html")


@app.route("/login", methods=["GET", "POST"])
def login():
    if request.method == "POST":
        email = request.form.get("email")
        password = request.form.get("password")

        user = User.query.filter_by(email=email).first()

        if user and check_password_hash(user.password, password):
            login_user(user)
            return dashboard(login_alert=True)
        else:
            return render_template("login.html", error="Invalid email or password")

    return render_template("login.html")


def dashboard(login_alert=False):
    if login_alert:
        flash(current_user.email, "success")
    return redirect(url_for("index"))


@app.route("/logout")
@login_required
def logout():
    logout_user()
    return redirect(url_for("login"))


@app.route("/history")
@login_required
def history():
    data_history = (
        History.query.filter_by(user_id=current_user.id)
        .order_by(History.created_date.desc())
        .all()
    )

    for item in data_history:
        item.probabilities = [
            ("anak", f"{item.children_prob:.4f}"),
            ("remaja", f"{item.adolescents_prob:.4f}"),
            ("dewasa", f"{item.adults_prob:.4f}"),
            ("semua usia", f"{item.all_ages_prob:.4f}"),
        ]

    return render_template("history.html", data_history=data_history)


if __name__ == "__main__":
    app.run(debug=True)