flask_whisper / app.py
Michael Natanael
change transcribe mechanism when uploading audio
8ed962f
raw
history blame
7.41 kB
from flask import Flask, render_template, request
# import whisper
import torchaudio
import tempfile
import os
import time
import torch
import numpy as np
import requests
from tqdm import tqdm
from transformers import BertTokenizer, AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from model.multi_class_model import MultiClassModel # Adjust if needed
app = Flask(__name__)
# === CONFIG ===
# CHECKPOINT_URL = "https://github.com/michael2002porto/bert_classification_indonesian_song_lyrics/releases/download/finetuned_checkpoints/original_split_synthesized.ckpt"
CHECKPOINT_URL = "https://huggingface.co/nenafem/original_split_synthesized/resolve/main/original_split_synthesized.ckpt?download=true"
CHECKPOINT_PATH = "final_checkpoint/original_split_synthesized.ckpt"
AGE_LABELS = ["semua usia", "anak", "remaja", "dewasa"]
# === FUNCTION TO DOWNLOAD CKPT IF NEEDED ===
def download_checkpoint_if_needed(url, save_path):
if not os.path.exists(save_path):
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"📥 Downloading model checkpoint from {url}...")
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
total = int(response.headers.get("content-length", 0))
with open(save_path, 'wb') as f, tqdm(total=total, unit='B', unit_scale=True, desc="Downloading") as pbar:
for chunk in response.iter_content(1024):
f.write(chunk)
pbar.update(len(chunk))
print("✅ Checkpoint downloaded!")
else:
raise Exception(f"❌ Failed to download: {response.status_code}")
# === INITIAL SETUP: Download & Load Model ===
download_checkpoint_if_needed(CHECKPOINT_URL, CHECKPOINT_PATH)
# Load tokenizer
tokenizer = BertTokenizer.from_pretrained('indolem/indobert-base-uncased')
# Load model from checkpoint
model = MultiClassModel.load_from_checkpoint(
CHECKPOINT_PATH,
n_out=4,
dropout=0.3,
lr=1e-5
)
model.eval()
def whisper_api(input_audio):
# https://huggingface.co/openai/whisper-large-v3
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=16, # batch size for inference - set based on your device
torch_dtype=torch_dtype,
device=device,
)
result = pipe(input_audio, return_timestamps=False, generate_kwargs={"language": "indonesian"})
print(result["text"])
return result
# === ROUTES ===
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/transcribe', methods=['POST'])
def transcribe():
try:
# Load Whisper with Indonesian language support (large / turbo)
# https://github.com/openai/whisper
# whisper_model = whisper.load_model("large")
# Start measuring time
start_time = time.time()
audio_file = request.files['file']
if audio_file:
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
temp_audio.write(audio_file.read())
temp_audio_path = temp_audio.name
# Load audio from bytes directly
waveform, sample_rate = torchaudio.load(temp_audio_path)
# Convert to mono if it is stereo
waveform = waveform.mean(dim=0, keepdim=True) if waveform.shape[0] > 1 else waveform
# Convert waveform to numpy
audio_array = waveform.squeeze(0).numpy()
os.remove(temp_audio_path) # cleanup temp file
# Step 1: Transcribe
# transcription = whisper_model.transcribe(temp_audio_path, language="id")
transcription = whisper_api({"array": audio_array, "sampling_rate": sample_rate})
transcribed_text = transcription["text"]
# Step 2: BERT Prediction
encoding = tokenizer.encode_plus(
transcribed_text,
add_special_tokens=True,
max_length=512,
return_token_type_ids=True,
padding="max_length",
return_attention_mask=True,
return_tensors='pt',
)
with torch.no_grad():
prediction = model(
encoding["input_ids"],
encoding["attention_mask"],
encoding["token_type_ids"]
)
logits = prediction
probabilities = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
predicted_class = np.argmax(probabilities)
predicted_label = AGE_LABELS[predicted_class]
prob_results = [(label, f"{prob:.4f}") for label, prob in zip(AGE_LABELS, probabilities)]
# Stop timer
end_time = time.time()
total_time = end_time - start_time
formatted_time = f"{total_time:.2f} seconds"
return render_template(
'transcribe.html',
task=transcribed_text,
prediction=predicted_label,
probabilities=prob_results,
total_time=formatted_time
)
except Exception as e:
print("Error:", e)
return str(e)
@app.route('/predict-text', methods=['POST'])
def predict_text():
try:
user_lyrics = request.form.get('lyrics', '').strip()
if not user_lyrics:
return "No lyrics provided.", 400
# Start timer
start_time = time.time()
encoding = tokenizer.encode_plus(
user_lyrics,
add_special_tokens=True,
max_length=512,
return_token_type_ids=True,
padding="max_length",
return_attention_mask=True,
return_tensors='pt',
)
with torch.no_grad():
prediction = model(
encoding["input_ids"],
encoding["attention_mask"],
encoding["token_type_ids"]
)
logits = prediction
probabilities = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
predicted_class = np.argmax(probabilities)
predicted_label = AGE_LABELS[predicted_class]
prob_results = [(label, f"{prob:.4f}") for label, prob in zip(AGE_LABELS, probabilities)]
# End timer
end_time = time.time()
total_time = f"{end_time - start_time:.2f} seconds"
return render_template(
'transcribe.html',
task=user_lyrics,
prediction=predicted_label,
probabilities=prob_results,
total_time=total_time
)
except Exception as e:
print("❌ Error in predict-text:", e)
return str(e), 500
if __name__ == "__main__":
app.run(debug=True)