Spaces:
Running
Running
Michael Natanael
commited on
Commit
·
0cc620c
1
Parent(s):
5d3a20e
run whisper locally
Browse files- app.py +6 -37
- requirements.txt +2 -2
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from flask import Flask, render_template, request
|
2 |
-
|
3 |
import tempfile
|
4 |
import os
|
5 |
import time
|
@@ -7,14 +7,14 @@ import torch
|
|
7 |
import numpy as np
|
8 |
import requests
|
9 |
from tqdm import tqdm
|
10 |
-
from transformers import BertTokenizer
|
11 |
from model.multi_class_model import MultiClassModel # Adjust if needed
|
|
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
15 |
# === CONFIG ===
|
16 |
-
|
17 |
-
CHECKPOINT_URL = "https://huggingface.co/nenafem/original_split_synthesized/resolve/main/original_split_synthesized.ckpt?download=true"
|
18 |
CHECKPOINT_PATH = "final_checkpoint/original_split_synthesized.ckpt"
|
19 |
AGE_LABELS = ["semua usia", "anak", "remaja", "dewasa"]
|
20 |
|
@@ -50,36 +50,6 @@ model = MultiClassModel.load_from_checkpoint(
|
|
50 |
model.eval()
|
51 |
|
52 |
|
53 |
-
def whisper_api(temp_audio_path):
|
54 |
-
# https://huggingface.co/openai/whisper-large-v3
|
55 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
56 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
57 |
-
|
58 |
-
model_id = "openai/whisper-large-v3"
|
59 |
-
|
60 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
61 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
62 |
-
)
|
63 |
-
model.to(device)
|
64 |
-
|
65 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
66 |
-
|
67 |
-
pipe = pipeline(
|
68 |
-
"automatic-speech-recognition",
|
69 |
-
model=model,
|
70 |
-
tokenizer=processor.tokenizer,
|
71 |
-
feature_extractor=processor.feature_extractor,
|
72 |
-
chunk_length_s=30,
|
73 |
-
batch_size=32, # batch size for inference - set based on your device
|
74 |
-
torch_dtype=torch_dtype,
|
75 |
-
device=device,
|
76 |
-
)
|
77 |
-
|
78 |
-
result = pipe(temp_audio_path, return_timestamps=False, generate_kwargs={"language": "indonesian"})
|
79 |
-
print(result["text"])
|
80 |
-
return result
|
81 |
-
|
82 |
-
|
83 |
# === ROUTES ===
|
84 |
|
85 |
@app.route('/', methods=['GET'])
|
@@ -92,7 +62,7 @@ def transcribe():
|
|
92 |
try:
|
93 |
# Load Whisper with Indonesian language support (large / turbo)
|
94 |
# https://github.com/openai/whisper
|
95 |
-
|
96 |
|
97 |
# Start measuring time
|
98 |
start_time = time.time()
|
@@ -105,8 +75,7 @@ def transcribe():
|
|
105 |
temp_audio_path = temp_audio.name
|
106 |
|
107 |
# Step 1: Transcribe
|
108 |
-
|
109 |
-
transcription = whisper_api(temp_audio_path)
|
110 |
os.remove(temp_audio_path)
|
111 |
transcribed_text = transcription["text"]
|
112 |
|
|
|
1 |
from flask import Flask, render_template, request
|
2 |
+
import whisper
|
3 |
import tempfile
|
4 |
import os
|
5 |
import time
|
|
|
7 |
import numpy as np
|
8 |
import requests
|
9 |
from tqdm import tqdm
|
10 |
+
from transformers import BertTokenizer
|
11 |
from model.multi_class_model import MultiClassModel # Adjust if needed
|
12 |
+
import lightning as L
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
|
16 |
# === CONFIG ===
|
17 |
+
CHECKPOINT_URL = "https://github.com/michael2002porto/bert_classification_indonesian_song_lyrics/releases/download/finetuned_checkpoints/original_split_synthesized.ckpt"
|
|
|
18 |
CHECKPOINT_PATH = "final_checkpoint/original_split_synthesized.ckpt"
|
19 |
AGE_LABELS = ["semua usia", "anak", "remaja", "dewasa"]
|
20 |
|
|
|
50 |
model.eval()
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
# === ROUTES ===
|
54 |
|
55 |
@app.route('/', methods=['GET'])
|
|
|
62 |
try:
|
63 |
# Load Whisper with Indonesian language support (large / turbo)
|
64 |
# https://github.com/openai/whisper
|
65 |
+
whisper_model = whisper.load_model("large")
|
66 |
|
67 |
# Start measuring time
|
68 |
start_time = time.time()
|
|
|
75 |
temp_audio_path = temp_audio.name
|
76 |
|
77 |
# Step 1: Transcribe
|
78 |
+
transcription = whisper_model.transcribe(temp_audio_path, language="id")
|
|
|
79 |
os.remove(temp_audio_path)
|
80 |
transcribed_text = transcription["text"]
|
81 |
|
requirements.txt
CHANGED
@@ -7,8 +7,8 @@ Jinja2==2.11.3
|
|
7 |
MarkupSafe==1.1.1
|
8 |
SQLAlchemy==1.3.22
|
9 |
Werkzeug==1.0.1
|
10 |
-
|
11 |
-
|
12 |
# ffmpeg
|
13 |
# ffmpeg-python
|
14 |
# imageio[ffmpeg]
|
|
|
7 |
MarkupSafe==1.1.1
|
8 |
SQLAlchemy==1.3.22
|
9 |
Werkzeug==1.0.1
|
10 |
+
openai-whisper
|
11 |
+
setuptools-rust
|
12 |
# ffmpeg
|
13 |
# ffmpeg-python
|
14 |
# imageio[ffmpeg]
|