from flask import ( Flask, render_template, request, url_for, redirect, flash, get_flashed_messages, ) from flask_login import ( LoginManager, login_user, logout_user, login_required, current_user, ) from flask_sqlalchemy import SQLAlchemy from flask_login import UserMixin from werkzeug.security import generate_password_hash, check_password_hash from faster_whisper import WhisperModel from groq import Groq import tempfile import os import datetime import time import torch import numpy as np import requests from tqdm import tqdm from transformers import BertTokenizer from model.multi_class_model import MultiClassModel # from model.database import db, User from sqlalchemy.exc import OperationalError from sqlalchemy import inspect app = Flask(__name__) # === CONFIG === # CHECKPOINT_URL = "https://github.com/michael2002porto/bert_classification_indonesian_song_lyrics/releases/download/finetuned_checkpoints/original_split_synthesized.ckpt" CHECKPOINT_URL = "https://huggingface.co/nenafem/original_split_synthesized/resolve/main/original_split_synthesized.ckpt?download=true" CHECKPOINT_PATH = "final_checkpoint/original_split_synthesized.ckpt" AGE_LABELS = ["semua usia", "anak", "remaja", "dewasa"] DATABASE_URI = "postgresql://postgres.tcqmmongiztvqkxxebnc:I1Nnj0H72Z3mXWcp@aws-0-ap-southeast-1.pooler.supabase.com:6543/postgres" # === CONNECT DATABASE === app.config["SQLALCHEMY_DATABASE_URI"] = DATABASE_URI app.config["SECRET_KEY"] = "I1Nnj0H72Z3mXWcp" # init extensions db = SQLAlchemy(app) login_manager = LoginManager(app) login_manager.login_view = "login" try: db.session.execute("SELECT 1") print("✅ Database connected successfully.") except OperationalError as e: print(f"❌ Database connection failed: {e}") def show_schema_info(): inspector = inspect(db.engine) # Get current schema (by default it's 'public' unless set explicitly) current_schema = db.engine.url.database all_schemas = inspector.get_schema_names() public_tables = inspector.get_table_names(schema="public") return { "current_schema": current_schema, "available_schemas": all_schemas, "public_tables": public_tables, } class User(db.Model, UserMixin): __tablename__ = "user" id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(255), nullable=False) password = db.Column(db.String(255)) created_date = db.Column(db.DateTime, default=datetime.datetime.now()) history = db.relationship("History", backref="user", lazy=True) class History(db.Model): __tablename__ = "history" id = db.Column(db.Integer, primary_key=True) lyric = db.Column(db.Text, nullable=False) predicted_label = db.Column(db.String(255), nullable=False) children_prob = db.Column(db.Float) adolescents_prob = db.Column(db.Float) adults_prob = db.Column(db.Float) all_ages_prob = db.Column(db.Float) processing_time = db.Column(db.Float) # store duration in seconds created_date = db.Column(db.DateTime, default=datetime.datetime.now) speech_to_text = db.Column(db.Boolean) user_id = db.Column(db.Integer, db.ForeignKey("user.id")) # Load user for Flask-Login @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) # === FUNCTION TO DOWNLOAD CKPT IF NEEDED === def download_checkpoint_if_needed(url, save_path): if not os.path.exists(save_path): os.makedirs(os.path.dirname(save_path), exist_ok=True) print(f"📥 Downloading model checkpoint from {url}...") response = requests.get(url, stream=True, timeout=10) if response.status_code == 200: total = int(response.headers.get("content-length", 0)) with open(save_path, "wb") as f, tqdm( total=total, unit="B", unit_scale=True, desc="Downloading" ) as pbar: for chunk in response.iter_content(1024): f.write(chunk) pbar.update(len(chunk)) print("✅ Checkpoint downloaded!") else: raise Exception(f"❌ Failed to download: {response.status_code}") # === INITIAL SETUP: Download & Load Model === print(show_schema_info()) download_checkpoint_if_needed(CHECKPOINT_URL, CHECKPOINT_PATH) # Load groq client = Groq(api_key="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") # Load tokenizer tokenizer = BertTokenizer.from_pretrained("indolem/indobert-base-uncased") # Load model from checkpoint model = MultiClassModel.load_from_checkpoint( CHECKPOINT_PATH, n_out=4, dropout=0.3, lr=1e-5 ) model.eval() # === INITIAL SETUP: Faster Whisper === # https://github.com/SYSTRAN/faster-whisper # faster_whisper_model_size = "large-v3" faster_whisper_model_size = "turbo" # Run on GPU with FP16 # model = WhisperModel(model_size, device="cuda", compute_type="float16") # or run on GPU with INT8 # model = WhisperModel(model_size, device="cuda", compute_type="int8_float16") # or run on CPU with INT8 faster_whisper_model = WhisperModel( faster_whisper_model_size, device="cpu", compute_type="int8" ) def faster_whisper(temp_audio_path): segments, info = faster_whisper_model.transcribe( temp_audio_path, language="id", beam_size=1, # Lower beam_size, faster but may miss words ) print( "Detected language '%s' with probability %f" % (info.language, info.language_probability) ) # for segment in segments: # print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) return " ".join(segment.text for segment in segments) def bert_predict(input_lyric): encoding = tokenizer.encode_plus( input_lyric, add_special_tokens=True, max_length=512, truncation=True, # Ensures input ≤512 tokens return_token_type_ids=True, padding="max_length", return_attention_mask=True, return_tensors="pt", ) with torch.no_grad(): prediction = model( encoding["input_ids"], encoding["attention_mask"], encoding["token_type_ids"], ) logits = prediction probabilities = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() predicted_class = np.argmax(probabilities) predicted_label = AGE_LABELS[predicted_class] prob_results = [ (label, f"{prob:.4f}") for label, prob in zip(AGE_LABELS, probabilities) ] return predicted_label, prob_results # === ROUTES === @app.route("/", methods=["GET"]) def index(): return render_template("index.html") @app.route("/transcribe", methods=["POST"]) def transcribe(): try: # Load Whisper with Indonesian language support (large / turbo) # https://github.com/openai/whisper # whisper_model = whisper.load_model("large") # Start measuring time start_time = time.time() audio_file = request.files["file"] if audio_file: # Save uploaded audio to temp file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: temp_audio.write(audio_file.read()) temp_audio_path = temp_audio.name # Step 1: Transcribe # transcribed_text = faster_whisper(temp_audio_path).strip() with open(temp_audio_path, "rb") as file: transcription = client.audio.transcriptions.create( file=(temp_audio_path, file.read()), model="whisper-large-v3", prompt="Transkripsikan hanya bagian lirik lagu saja", language="id", response_format="verbose_json", temperature=0, ) transcribed_text = transcription.text.strip() os.remove(temp_audio_path) # Step 2: BERT Prediction predicted_label, prob_results = bert_predict(transcribed_text) # Stop timer end_time = time.time() total_time = end_time - start_time formatted_time = f"{total_time:.2f} seconds" # Insert log prediction new_prediction_history = History( lyric=transcribed_text, predicted_label=predicted_label, children_prob=prob_results[AGE_LABELS.index("anak")][1], adolescents_prob=prob_results[AGE_LABELS.index("remaja")][1], adults_prob=prob_results[AGE_LABELS.index("dewasa")][1], all_ages_prob=prob_results[AGE_LABELS.index("semua usia")][1], processing_time=round(total_time, 2), speech_to_text=True, user_id=current_user.id if current_user.is_authenticated else None, ) db.session.add(new_prediction_history) db.session.commit() return render_template( "transcribe.html", task=transcribed_text, prediction=predicted_label, probabilities=prob_results, total_time=formatted_time, ) except Exception as e: print("Error:", e) return str(e) @app.route("/predict-text", methods=["POST"]) def predict_text(): try: user_lyrics = request.form.get("lyrics", "").strip() if not user_lyrics: return "No lyrics provided.", 400 # Start timer start_time = time.time() # Step 1: BERT Prediction predicted_label, prob_results = bert_predict(user_lyrics) # End timer end_time = time.time() total_time = end_time - start_time formatted_time = f"{total_time:.2f} seconds" # Insert log prediction new_prediction_history = History( lyric=user_lyrics, predicted_label=predicted_label, children_prob=prob_results[AGE_LABELS.index("anak")][1], adolescents_prob=prob_results[AGE_LABELS.index("remaja")][1], adults_prob=prob_results[AGE_LABELS.index("dewasa")][1], all_ages_prob=prob_results[AGE_LABELS.index("semua usia")][1], processing_time=round(total_time, 2), user_id=current_user.id if current_user.is_authenticated else None, ) db.session.add(new_prediction_history) db.session.commit() return render_template( "transcribe.html", task=user_lyrics, prediction=predicted_label, probabilities=prob_results, total_time=formatted_time, ) except Exception as e: print("❌ Error in predict-text:", e) return str(e), 500 @app.route("/register", methods=["GET", "POST"]) def register(): if request.method == "POST": email = request.form.get("email") password = request.form.get("password") confirm_password = request.form.get("confirm-password") if User.query.filter_by(email=email).first(): return render_template( "register.html", error="Email already taken!", email=email, password=password, confirm_password=confirm_password, ) if password != confirm_password: return render_template( "register.html", error="Password does not match!", email=email, password=password, confirm_password=confirm_password, ) hashed_password = generate_password_hash(password, method="pbkdf2:sha256") new_user = User(email=email, password=hashed_password) db.session.add(new_user) db.session.commit() flash( "Sign up successful! Please log in.", "success" ) # Flash the success message return redirect(url_for("login")) return render_template("register.html") @app.route("/login", methods=["GET", "POST"]) def login(): if request.method == "POST": email = request.form.get("email") password = request.form.get("password") user = User.query.filter_by(email=email).first() if user and check_password_hash(user.password, password): login_user(user) return dashboard(login_alert=True) else: return render_template("login.html", error="Invalid email or password") return render_template("login.html") def dashboard(login_alert=False): if login_alert: flash(current_user.email, "success") return redirect(url_for("index")) @app.route("/logout") @login_required def logout(): logout_user() return redirect(url_for("login")) @app.route("/history") @login_required def history(): data_history = ( History.query.filter_by(user_id=current_user.id) .order_by(History.created_date.desc()) .all() ) for item in data_history: item.probabilities = [ ("anak", f"{item.children_prob:.4f}"), ("remaja", f"{item.adolescents_prob:.4f}"), ("dewasa", f"{item.adults_prob:.4f}"), ("semua usia", f"{item.all_ages_prob:.4f}"), ] return render_template("history.html", data_history=data_history) if __name__ == "__main__": app.run(debug=True)