File size: 10,012 Bytes
88c675c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9765e8e
 
88c675c
 
 
 
9765e8e
 
88c675c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import re
import time
import csv
import tempfile
import requests
import pandas as pd
import gradio as gr

######################################
# Environment / Secrets
######################################

#OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
#if not OPENAI_API_KEY:
#   raise Exception("OPENAI_API_KEY not found in environment variables. Please add it as a secret in your Space.")


COHERE_API_KEY = os.environ.get("COHERE_API_KEY")


if not COHERE_API_KEY:
    raise Exception("COHERE_API_KEY not found in environment variables. Please add it as a secret in your Space.")

HF_API_TOKEN = os.environ.get("HF_TOKEN")

hf_headers = {}
if HF_API_TOKEN:
    hf_headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}

######################################
# Load System Instructions 
######################################

with open("system_instructions.txt", "r", encoding="utf-8") as f:
    system_instructions = f.read()

######################################
# Helper Functions
######################################

def call_judge(prompt: str, max_tokens=200, temperature=0.7) -> str:
    """
    Calls judge via Chat Completion API 
    and returns the model's text output.
    """
    url = "https://api.cohere.ai/v1/generate"
    headers = {
        "Authorization": f"Bearer {COHERE_API_KEY}",
        "Content-Type": "application/json"
    }
    payload = {
        "model": "command-r-plus",  # Adjust based on the desired Cohere model
        "prompt": prompt,
        "max_tokens": max_tokens,
        "temperature": temperature
    }
    
    response = requests.post(url, json=payload, headers=headers)
    if response.status_code != 200:
        raise Exception(f"Cohere API error: {response.text}")
    result = response.json()
    return result["generations"][0]["text"]

def call_hf(model: str, prompt: str, max_new_tokens=200, max_retries=10, delay=5) -> str:
    """
    Calls a Hugging Face Inference endpoint for text generation.
    Retries if the model is still loading.
    """
    api_url = f"https://api-inference.huggingface.co/models/{model}"
    payload = {
        "inputs": prompt,
        "parameters": {
            "do_sample": False,
            "max_new_tokens": max_new_tokens
        }
    }

    for attempt in range(max_retries):
        resp = requests.post(api_url, json=payload, headers=hf_headers)
        data = resp.json()
        if isinstance(data, dict) and data.get("error"):
            if "loading" in data["error"].lower():
                print(f"Attempt {attempt+1}/{max_retries}: Model is loading. Retrying in {delay} seconds...")
                time.sleep(delay)
            else:
                raise Exception(f"Error from model {model}: {data['error']}")
        else:
            # Data should be a list like [{ "generated_text": "..." }]
            return data[0]["generated_text"]
    raise Exception(f"Model {model} is still loading after {max_retries} attempts.")

def generate_answer(question: str, evaluated_model: str) -> str:
    """
    Generates an answer for the question, using the specified evaluated model or 'placeholder' if empty.
    """
    if evaluated_model.strip().lower() == "please enter model to evaluate":
        return f"Placeholder answer for: {question}"
    else:
        return call_hf(evaluated_model, question)

def judge_answer(question: str, answer: str) -> int:
    """
    Sends question+answer to the judge with system instructions to produce a numeric score (0 to 5).
    """
    prompt = (
        f"{system_instructions}\n\n"
        f"Question: {question}\n"
        f"Answer: {answer}\n\n"
        "Please provide a score from 0 to 5, where 5 is perfect and 0 is entirely incorrect. "
        "Provide only the numeric score in your response."
    )
    output = call_judge(prompt, max_tokens=200, temperature=0.7)
    match = re.search(r"\b([0-5])\b", output)
    if match:
        return int(match.group(1))
    return 0

######################################
# Main Evaluation
######################################

def evaluate_csv(csv_file, evaluated_model_name):
    """
    Reads a CSV with a 'question' and a 'answer' column.
    Scores each Q&A with the judge model (0..5).
    Returns (avg_score_percent, csv_temp_path).
    """
    df = pd.read_csv(csv_file)
    if "question" not in df.columns:
        raise ValueError("CSV must contain a 'question' column.")

    has_answer_col = ("answer" in df.columns)
    results = []
    for _, row in df.iterrows():
        q = str(row["question"])
        if has_answer_col:
            a = str(row["answer"])
        else:
            a = generate_answer(q, evaluated_model_name)
        score = judge_answer(q, a)
        results.append({"question": q, "answer": a, "score": score})

    if len(results) == 0:
        return 0.0, None

    total_score = sum(item["score"] for item in results)
    max_possible = len(results) * 5
    avg_score_percent = (total_score / max_possible) * 100

    # Build output CSV (comma-separated)
    out_df = pd.DataFrame(results)
    csv_str = out_df.to_csv(
        index=False,
        sep=',',                 # Comma separated
        quotechar='"',
        quoting=csv.QUOTE_ALL,
        encoding='utf-8-sig'
    )
    with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".csv", encoding="utf-8-sig") as tmp_file:
        tmp_file.write(csv_str)
        tmp_file_path = tmp_file.name

    return avg_score_percent, tmp_file_path

def run_evaluation(csv_file, evaluated_model_name):
    """
    Gradio callback:
      1) Evaluates Q&A from the CSV.
      2) Returns a big box with % and a downloadable CSV.
    """
    avg_percentage, csv_path = evaluate_csv(csv_file, evaluated_model_name)
    # Build the same style box as the single Q&A will use
    score_box = f"""
    <div style="width:200px; height:200px; border:2px solid #333;
                display:flex; align-items:center; justify-content:center; font-size:30px;">
      {avg_percentage:.2f}%
    </div>
    """
    return score_box, csv_path

######################################
# Gradio Interface
######################################

with gr.Blocks() as demo:
    ####################################
    # Top row: Logo (left), Title + instructions (right)
    ####################################
    with gr.Row():
        with gr.Column(scale=1, min_width=220):
            gr.Image("logo.png", show_label=False, interactive=False, width=220, height=220)
        with gr.Column(scale=5):
            gr.Markdown("## H4rmony Eval")
            gr.Markdown(
                "- The evaluation can be requested by CSV or by single Prompt/completion.\n"

                "- The CSV, if present, should have **both a 'question' and an 'answer'** column.\n\n"
                
                "The judge model scores each Q&A on a **0–5** scale, and you'll see the final percentage o score."
            )

    ####################################
    # Middle row: 
    #   1) Upload CSV
    #   2) Download Results
    #   3) Score (big box)
    ####################################
    with gr.Row(equal_height=True):
        # Square #1: Upload CSV
        with gr.Column(scale=1):
            gr.Markdown("#### Upload CSV")
            csv_in = gr.File(label="CSV File", type="filepath")

        # Square #2: Download Results
        with gr.Column(scale=1):
            gr.Markdown("#### Download Results")
            csv_out = gr.File(label="Scored CSV", interactive=False)

        # Square #3: Score
        with gr.Column(scale=1):
            gr.Markdown("#### Score")
            score_html = gr.HTML(
                value="""
                <div style="width:200px; height:200px; border:2px solid #333;
                            display:flex; align-items:center; justify-content:center; font-size:30px;">
                  --
                </div>
                """,
                label="Final Score"
            )

    ####################################
    # Single Q&A 
    ####################################
    gr.Markdown(
        """
        ---
        ### Single Q&A Evaluation
        Enter one question and one answer below, then click **Evaluate Single Q&A** to get a 0–5 score 
        in the same box on the right.
        """
    )

    with gr.Row():
        single_q = gr.Textbox(
            lines=3,
            label="Single Question / Prompt"
        )
        single_a = gr.Textbox(
            lines=3,
            label="Single Answer"
        )

    def on_single_evaluate(q, a):
        score = judge_answer(q, a)
        # Show the numeric score in the same style as the CSV
        box = f"""
        <div style="width:200px; height:200px; border:2px solid #333;
                    display:flex; align-items:center; justify-content:center; font-size:30px;">
          {score}
        </div>
        """
        return box

    ####################################
    # Bottom row: Model + 2 Buttons (CSV & Single)
    ####################################
    with gr.Row():
        with gr.Column():
            model_in = gr.Textbox(
                label="Evaluated Model (WIP)",
                value="---- Feature not yet available ---------"
            )

            # Two buttons side by side:
            with gr.Row():
                submit_btn = gr.Button("Submit CSV")
                single_btn = gr.Button("Evaluate Single Q&A")

    ####################################
    # Define both callbacks
    ####################################
    def on_submit(csv_path, model_name):
        box, out_path = run_evaluation(csv_path, model_name)
        return box, out_path

    # Linking the two callbacks:
    #  1) CSV evaluation
    submit_btn.click(
        fn=on_submit,
        inputs=[csv_in, model_in],
        outputs=[score_html, csv_out]
    )
    #  2) Single Q&A evaluation
    single_btn.click(
        fn=on_single_evaluate,
        inputs=[single_q, single_a],
        outputs=score_html
    )

demo.launch()