File size: 6,382 Bytes
3efcf63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfa748
3efcf63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9695d2
 
 
3efcf63
 
ae07547
3efcf63
b9695d2
3efcf63
 
 
 
 
b9695d2
3efcf63
 
 
b9695d2
3efcf63
fbffc44
3efcf63
 
 
ae07547
8c40bcd
3efcf63
1cadf7f
 
 
 
 
 
 
 
 
 
 
 
3efcf63
 
 
 
 
 
24ea4f9
 
fcb62cc
24ea4f9
636ded7
691f25c
 
 
 
636ded7
2dbbdc4
 
 
636ded7
691f25c
636ded7
7947d57
fbffc44
636ded7
24ea4f9
f6b2f23
7947d57
3efcf63
24ea4f9
ae07547
3efcf63
 
0682a55
24ea4f9
7947d57
24ea4f9
fbffc44
ea21a31
 
3efcf63
0a3dcce
82f9a23
fbffc44
82f9a23
fbffc44
fc4ddae
82f9a23
 
3efcf63
 
 
 
 
 
 
 
8c40bcd
3efcf63
 
1cadf7f
 
 
 
 
3efcf63
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import requests
import os
import random
import pandas as pd

# Load instructions from local files
def load_instruction(persona):
    try:
        with open(f"instructions/{persona.lower()}.txt", "r") as file:
            return file.read()
    except FileNotFoundError:
        return ""

# Call Cohere API
def call_cohere_api(system_instruction, user_prompt):
    headers = {
        "Authorization": f"Bearer {os.getenv('COHERE_API_KEY')}",
        "Content-Type": "application/json"
    }
    
    # Append word limit instruction
    user_prompt += "\n\nWhen possible, take into account Bristol and surrounding South West England ecosystem and culture."
    user_prompt += "\n\nAnswer in 100 words or fewer."
    payload = {
        "model": "command-r-plus",
        "message": user_prompt,
        "preamble": system_instruction,
        "max_tokens": 300
    }
    response = requests.post("https://api.cohere.ai/v1/chat", headers=headers, json=payload)
    return response.json().get("text", "No response").strip()

# Load questions from file
def load_questions():
    try:
        with open("questions.txt", "r") as file:
            return [line.strip() for line in file if line.strip()]
    except FileNotFoundError:
        return []

questions_list = load_questions()

# Generate random question
def get_random_question():
    return random.choice(questions_list) if questions_list else "No questions available."

# Load counter-narratives CSV
def load_counternarratives():
    try:
        df = pd.read_csv("counternarratives.csv")
        return df
    except FileNotFoundError:
        print("counternarratives.csv not found.")
        return pd.DataFrame(columns=["myth", "fact", "persona"])

counternarratives = load_counternarratives()

# Generate Random Myth or Fact and trigger persona response
def get_random_myth_or_fact():
    if counternarratives.empty:
        return "No myths or facts available.", "Fact-Checker", "", "", ""

    # 🔄 Randomly select a row from the dataframe
    row = counternarratives.sample(1).iloc[0]
    selected_column = random.choice(["myth", "fact"])
    myth_or_fact = row[selected_column]
    persona = row["persona"]

    # 🔄 Call the Cohere API to get the persona's response
    persona_instruction = load_instruction(persona)
    persona_response = call_cohere_api(persona_instruction, myth_or_fact)

    # ✅ Fact-checker response logic
    if selected_column == "myth":
        fact_check_response = f"❌ **MYTH**\n\nThe fact is: {row['fact']}"
    else:
        fact_check_response = f"✅ **FACT**\n\nIndeed, {row['fact']}"

    # Return the myth/fact, update the personas, and fill the responses
    return myth_or_fact, persona, persona_response, fact_check_response, f"### {persona} Responds","### Fact Checker"

def ask_with_titles(p1, p2, q):
    # Generate responses
    response1 = call_cohere_api(load_instruction(p1), q)
    response2 = call_cohere_api(load_instruction(p2), q)

    # Generate titles
    title1 = f"### {p1} Responds"
    title2 = f"### {p2} Responds"
    
    # Return responses and titles
    return response1, response2, title1, title2

# Dynamically load persona names from instructions folder
personas = [os.path.splitext(f)[0].capitalize() for f in os.listdir("instructions") if f.endswith(".txt")]

# Gradio Interface
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=0.15):
            gr.Image(value="data/WildVoices.png", label="Wild Voices", show_label=False)
        with gr.Column(scale=0.50):
            gr.Markdown("""
            
            # 🌲 **Wild Voices** — *Listening to the More-than-Human World*  
            Welcome to **Wild Voices**, a unique space where you can converse with the more-than-human world. 
            Here, you are invited to ask questions to *rivers*, *trees*, *owls*, *foxes*, and many more. 
            Listen as they respond from their own perspectives—offering the wisdom of the forest, the resilience of the river, and the gentle whispers of the wind.  
            
            🦄 **Generate Myths and Facts:** Challenge common narratives with our *Myth/Fact Generator*, guided by nature’s voice of truth.            
            🎲 **Ask Random Questions:** Get inspired by thought-provoking questions that spark connection with the natural world.  
            🦉 **Discover Hidden Wisdom:** Experience the reflections of *Oak*, *Dragonfly*, *Rain*, and even the humble *Dandelion* as they share their stories.  
            
            ---  
            
            **Space created and powered by [The H4rmony Project](https://TheH4rmonyproject.org)** — Promoting Sustainable Narratives Through AI.         
            _Based on an original concept by [Crystal Campbell](https://www.linkedin.com/in/earthly/) for a more-than-human AI Council of Beings._ 
            
            """)

            
    with gr.Row():
        persona1 = gr.Dropdown(personas, label="Choose First Persona", value="Earth")
        persona2 = gr.Dropdown(personas, label="Choose Second Persona", value="Crow")

    with gr.Row():
        with gr.Column():        
            user_input = gr.Textbox(label="🌱 Your Question", placeholder="e.g., What do you think of humans?", lines=2)
        with gr.Column(scale=0.20):      
            random_button = gr.Button("🎲 Generate Random Question")
            ask_button = gr.Button("🌎 Submit Question")
    with gr.Row():             
        myth_fact_button = gr.Button("🤔 Generate Random Myth/Fact")

    with gr.Row():
        with gr.Column(scale=0.50):
            output1_title = gr.Markdown("### ")
        with gr.Column(scale=0.50):
            output2_title = gr.Markdown("### ")
    with gr.Row():
        output1 = gr.Textbox(label="")
        output2 = gr.Textbox(label="")

    # Button events
    random_button.click(fn=get_random_question, inputs=[], outputs=[user_input])
    
    # Myth/Fact button click event
    myth_fact_button.click(
        fn=get_random_myth_or_fact, 
        inputs=[], 
        outputs=[user_input, persona1, output1, output2, output1_title, output2_title]
    )

    ask_button.click(
        fn=ask_with_titles, 
        inputs=[persona1, persona2, user_input], 
        outputs=[output1, output2, output1_title, output2_title]
    )

if __name__ == "__main__":
    demo.launch()