WildVoices / app.py
neovalle's picture
Update app.py
7e17aec verified
import gradio as gr
import requests
import os
import random
import pandas as pd
# Load instructions from local files
def load_instruction(persona):
try:
with open(f"instructions/{persona.lower()}.txt", "r") as file:
return file.read()
except FileNotFoundError:
return ""
# Call Cohere API
def call_cohere_api(system_instruction, user_prompt):
headers = {
"Authorization": f"Bearer {os.getenv('COHERE_API_KEY')}",
"Content-Type": "application/json"
}
# Append word limit instruction
user_prompt += "\n\nWhen possible, make your answer relevant to Bristol or surrounding South West England context."
user_prompt += "\n\nAnswer in 100 words or fewer."
payload = {
"model": "command-r-plus",
"message": user_prompt,
"preamble": system_instruction,
"max_tokens": 300
}
response = requests.post("https://api.cohere.ai/v1/chat", headers=headers, json=payload)
return response.json().get("text", "No response").strip()
# Load questions from file
def load_questions():
try:
with open("questions.txt", "r") as file:
return [line.strip() for line in file if line.strip()]
except FileNotFoundError:
return []
questions_list = load_questions()
# Generate random question
def get_random_question():
return random.choice(questions_list) if questions_list else "No questions available."
# Load counter-narratives CSV
def load_counternarratives():
try:
df = pd.read_csv("counternarratives.csv")
return df
except FileNotFoundError:
print("counternarratives.csv not found.")
return pd.DataFrame(columns=["myth", "fact", "persona"])
counternarratives = load_counternarratives()
# Generate Random Myth or Fact and trigger persona response
def get_random_myth_or_fact():
if counternarratives.empty:
return "No myths or facts available.", "Fact-Checker", "", "", ""
# 🔄 Randomly select a row from the dataframe
row = counternarratives.sample(1).iloc[0]
selected_column = random.choice(["myth", "fact"])
myth_or_fact = row[selected_column]
persona = row["persona"]
# 🔄 Call the Cohere API to get the persona's response
persona_instruction = load_instruction(persona)
persona_response = call_cohere_api(persona_instruction, myth_or_fact)
# preparat the fact checker response
fact_check_response = f"{myth_or_fact} - Myth or Fact?\n\n"
# ✅ Fact-checker response logic
if selected_column == "myth":
fact_check_response += f"❌ **MYTH**\nThe fact is: {row['fact']}"
else:
fact_response=call_cohere_api("You are an ecolinguistic aware assistant.", f"Elaborate on this fact: {row['fact']}")
fact_check_response += f"✅ **FACT**\n{fact_response}"
# Return the myth/fact, update the personas, and fill the responses
return myth_or_fact, persona, fact_check_response, persona_response,f"### Fact Checker", f"### .. and what the {persona} would say about it?:"
def ask_with_titles(p1, q):
# Generate responses
response1 = call_cohere_api(load_instruction(p1), q)
#response2 = call_cohere_api(load_instruction(p2), q)
# Generate titles
title1 = f"### {p1} Responds"
#title2 = f"### {p2} Responds"
# Return responses and titles
return response1, title1,"",""
# Dynamically load persona names from instructions folder
personas = [os.path.splitext(f)[0].capitalize() for f in os.listdir("instructions") if f.endswith(".txt")]
# Gradio Interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=0.10):
gr.Image(value="data/WildVoices.png", label="Wild Voices", show_label=False)
with gr.Column(scale=0.75):
gr.Markdown("""
# 🌲 **Wild Voices** — *Listening to the More-than-Human World*
Welcome to **Wild Voices**, a unique space where you can converse with the more-than-human world.
Here, you are invited to ask questions to *rivers*, *trees*, *owls*, *foxes*, and many more.
Listen as they respond from their own perspectives—offering the wisdom of the forest, the resilience of the river, and the gentle whispers of the wind.
🦉 **Ask Any Question:** Discover hidden wisdom, and experience the reflections of *Oak*, *Dragonfly*, *Rain*, and even the humble *Dandelion* as they share their stories.
🎲 **Ask Random Questions:** Get inspired by thought-provoking questions that spark connection with the natural world.
🦄 **Generate Myths and Facts:** Challenge common narratives with our *Myth/Fact Generator*, guided by nature’s voice of truth.
**Space created and powered by [The H4rmony Project](https://TheH4rmonyproject.org)** — Promoting Sustainable Narratives Through AI.
Personae, questions and myth/fact datasets have been generated by [Theophrastus](https://chatgpt.com/g/g-XKAVRvxwc-theophrastus), a H4rmony chat assistant.
_Based on an original concept by [Crystal Campbell](https://www.linkedin.com/in/earthly/) for a more-than-human AI Council of Beings._
""")
with gr.Row():
with gr.Column(scale=0.15):
persona1 = gr.Dropdown(personas, label="Choose Persona", value="Owl")
#with gr.Column(scale=0.15):
# persona2 = gr.Dropdown(personas, label="Choose Second Persona", value="Crow")
with gr.Row():
user_input = gr.Textbox(label="🌱 Your Question", placeholder="e.g., What do you think of humans?")
with gr.Row():
random_button = gr.Button("🎲 Generate Random Question")
ask_button = gr.Button("🌎 Submit Question")
myth_fact_button = gr.Button("🤔 Generate Random Myth/Fact")
with gr.Row():
output1_title = gr.Markdown("### ")
with gr.Row():
output1 = gr.Textbox(label="")
with gr.Row():
output2_title = gr.Markdown("### ")
with gr.Row():
output2 = gr.Textbox(label="")
# Button events
random_button.click(fn=get_random_question, inputs=[], outputs=[user_input])
# Myth/Fact button click event
myth_fact_button.click(
fn=get_random_myth_or_fact,
inputs=[],
outputs=[user_input, persona1, output1, output2, output1_title, output2_title]
)
ask_button.click(
fn=ask_with_titles,
inputs=[persona1, user_input],
outputs=[output1, output1_title, output2, output2_title]
)
if __name__ == "__main__":
demo.launch()