Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import yfinance as yf
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import plotly.graph_objs as go
|
| 5 |
+
|
| 6 |
+
def fetch_data(ticker, start_date, end_date):
|
| 7 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
| 8 |
+
return data
|
| 9 |
+
|
| 10 |
+
def calculate_indicators(data, short_ema, long_ema):
|
| 11 |
+
# Exponential Moving Averages
|
| 12 |
+
data['EMA_Short'] = data['Close'].ewm(span=short_ema, adjust=False).mean()
|
| 13 |
+
data['EMA_Long'] = data['Close'].ewm(span=long_ema, adjust=False).mean()
|
| 14 |
+
return data
|
| 15 |
+
|
| 16 |
+
def identify_signals(data):
|
| 17 |
+
data['Position'] = (data['EMA_Short'] > data['EMA_Long']).astype(int)
|
| 18 |
+
data['Signal'] = data['Position'].diff()
|
| 19 |
+
data['Buy Signal'] = data['Signal'] == 1
|
| 20 |
+
data['Sell Signal'] = data['Signal'] == -1
|
| 21 |
+
return data
|
| 22 |
+
|
| 23 |
+
def plot_data(data):
|
| 24 |
+
fig = go.Figure()
|
| 25 |
+
|
| 26 |
+
# Adding Close price trace
|
| 27 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='blue', width=2)))
|
| 28 |
+
|
| 29 |
+
# Adding EMAs
|
| 30 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['EMA_Short'], name=f'EMA {short_ema}', line=dict(color='green', width=1.5)))
|
| 31 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['EMA_Long'], name=f'EMA {long_ema}', line=dict(color='red', width=1.5)))
|
| 32 |
+
|
| 33 |
+
# Adding Buy and Sell signals
|
| 34 |
+
buys = data[data['Buy Signal']]
|
| 35 |
+
sells = data[data['Sell Signal']]
|
| 36 |
+
fig.add_trace(go.Scatter(x=buys.index, y=buys['Close'], mode='markers', name='Buy Signal', marker=dict(symbol='triangle-up', size=12, color='green')))
|
| 37 |
+
fig.add_trace(go.Scatter(x=sells.index, y=sells['Close'], mode='markers', name='Sell Signal', marker=dict(symbol='triangle-down', size=12, color='red')))
|
| 38 |
+
|
| 39 |
+
# Layout updates
|
| 40 |
+
fig.update_layout(title='2 EMA Crossover Trading Strategy Visualization', xaxis_title='Date', yaxis_title='Price', template='plotly_dark')
|
| 41 |
+
fig.update_xaxes(rangeslider_visible=True)
|
| 42 |
+
|
| 43 |
+
return fig
|
| 44 |
+
|
| 45 |
+
def main():
|
| 46 |
+
st.sidebar.title("Settings")
|
| 47 |
+
ticker = st.sidebar.text_input("Enter the ticker symbol, e.g., 'AAPL'", 'AAPL')
|
| 48 |
+
start_date = st.sidebar.date_input("Select the start date")
|
| 49 |
+
end_date = st.sidebar.date_input("Select the end date")
|
| 50 |
+
short_ema = st.sidebar.number_input("Enter the shorter EMA period", min_value=1, value=12)
|
| 51 |
+
long_ema = st.sidebar.number_input("Enter the longer EMA period", min_value=1, value=26)
|
| 52 |
+
|
| 53 |
+
st.title("2 EMA Crossover Trading Strategy")
|
| 54 |
+
st.markdown("""
|
| 55 |
+
## Description
|
| 56 |
+
This application visualizes a 2 Exponential Moving Average (EMA) Crossover Strategy on historical stock data.
|
| 57 |
+
The strategy involves two EMAs: a shorter period EMA and a longer period EMA.
|
| 58 |
+
A **buy signal** is generated when the shorter EMA crosses above the longer EMA, and a **sell signal** is generated when the shorter EMA crosses below the longer EMA.
|
| 59 |
+
""")
|
| 60 |
+
|
| 61 |
+
if st.sidebar.button("Analyze"):
|
| 62 |
+
data = fetch_data(ticker, start_date, end_date)
|
| 63 |
+
data = calculate_indicators(data, short_ema, long_ema)
|
| 64 |
+
data = identify_signals(data)
|
| 65 |
+
fig = plot_data(data)
|
| 66 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 67 |
+
|
| 68 |
+
if __name__ == "__main__":
|
| 69 |
+
main()
|
| 70 |
+
|