netflypsb commited on
Commit
27e6c2c
·
verified ·
1 Parent(s): 20c9805

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -80
app.py DELETED
@@ -1,80 +0,0 @@
1
- import streamlit as st
2
- import yfinance as yf
3
- import pandas as pd
4
- import numpy as np
5
- import matplotlib.pyplot as plt
6
-
7
- def fetch_data(ticker, start_date, end_date):
8
- data = yf.download(ticker, start=start_date, end=end_date)
9
- return data
10
-
11
- def calculate_indicators(data):
12
- # Bollinger Bands
13
- data['Middle Band'] = data['Close'].rolling(window=20).mean()
14
- data['Upper Band'] = data['Middle Band'] + 1.96 * data['Close'].rolling(window=20).std()
15
- data['Lower Band'] = data['Middle Band'] - 1.96 * data['Close'].rolling(window=20).std()
16
-
17
- # Moving Averages
18
- data['MA5'] = data['Close'].rolling(window=5).mean()
19
- data['MA10'] = data['Close'].rolling(window=10).mean()
20
-
21
- return data
22
-
23
- def identify_signals(data):
24
- data['Buy Signal'] = ((data['Close'] < data['Lower Band']) & (data['Close'].shift(1) > data['Lower Band'])) | \
25
- ((data['Close'] > data['MA5']) & (data['Close'].shift(1) < data['MA5']))
26
- data['Sell Signal'] = ((data['Close'] > data['Upper Band']) & (data['Close'].shift(1) < data['Upper Band'])) | \
27
- ((data['Close'] < data['MA5']) & (data['Close'].shift(1) > data['MA5']))
28
-
29
- # To properly track the price at which a signal occurs, we ensure signal markers are associated with the price
30
- data['Signal Price'] = data.apply(lambda row: row['Close'] if row['Buy Signal'] or row['Sell Signal'] else np.nan, axis=1)
31
- return data
32
-
33
- def signal_table(data):
34
- # Extracting signal events and necessary information
35
- signals = pd.DataFrame()
36
- signals['Date'] = data.index
37
- signals['Price'] = data['Signal Price']
38
- signals['Signal'] = np.where(data['Buy Signal'], 'Buy', np.where(data['Sell Signal'], 'Sell', ''))
39
- signals = signals.dropna(subset=['Price']) # Remove rows where no signal occurred
40
- return signals
41
-
42
-
43
- def plot_data(data):
44
- plt.figure(figsize=(10, 5))
45
- plt.plot(data['Close'], label='Close Price')
46
- plt.plot(data['Upper Band'], label='Upper Bollinger Band', linestyle='--')
47
- plt.plot(data['Middle Band'], label='Middle Bollinger Band', linestyle='--')
48
- plt.plot(data['Lower Band'], label='Lower Bollinger Band', linestyle='--')
49
- plt.plot(data['MA5'], label='5-Day MA', color='green', linestyle='-.')
50
- plt.plot(data['MA10'], label='10-Day MA', color='red', linestyle='-.')
51
-
52
- buy_signals = data[data['Buy Signal']]
53
- sell_signals = data[data['Sell Signal']]
54
- plt.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='green', s=100, label='Buy Signal')
55
- plt.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', s=100, label='Sell Signal')
56
-
57
- plt.title('Stock Price and Trading Signals')
58
- plt.xlabel('Date')
59
- plt.ylabel('Price')
60
- plt.legend()
61
- plt.grid(True)
62
- plt.show()
63
-
64
- def main():
65
- st.sidebar.title("Settings")
66
- ticker = st.sidebar.text_input("Enter the ticker symbol, e.g., 'AAPL'")
67
- start_date = st.sidebar.date_input("Select the start date")
68
- end_date = st.sidebar.date_input("Select the end date")
69
-
70
- if st.sidebar.button("Analyze"):
71
- data = fetch_data(ticker, start_date, end_date)
72
- data = calculate_indicators(data)
73
- data = identify_signals(data)
74
- signals = signal_table(data)
75
- plot_data(data)
76
- st.pyplot(plt)
77
- st.dataframe(signals)
78
-
79
- if __name__ == "__main__":
80
- main()