Delete app.py
Browse files
app.py
DELETED
|
@@ -1,80 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import yfinance as yf
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import numpy as np
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
|
| 7 |
-
def fetch_data(ticker, start_date, end_date):
|
| 8 |
-
data = yf.download(ticker, start=start_date, end=end_date)
|
| 9 |
-
return data
|
| 10 |
-
|
| 11 |
-
def calculate_indicators(data):
|
| 12 |
-
# Bollinger Bands
|
| 13 |
-
data['Middle Band'] = data['Close'].rolling(window=20).mean()
|
| 14 |
-
data['Upper Band'] = data['Middle Band'] + 1.96 * data['Close'].rolling(window=20).std()
|
| 15 |
-
data['Lower Band'] = data['Middle Band'] - 1.96 * data['Close'].rolling(window=20).std()
|
| 16 |
-
|
| 17 |
-
# Moving Averages
|
| 18 |
-
data['MA5'] = data['Close'].rolling(window=5).mean()
|
| 19 |
-
data['MA10'] = data['Close'].rolling(window=10).mean()
|
| 20 |
-
|
| 21 |
-
return data
|
| 22 |
-
|
| 23 |
-
def identify_signals(data):
|
| 24 |
-
data['Buy Signal'] = ((data['Close'] < data['Lower Band']) & (data['Close'].shift(1) > data['Lower Band'])) | \
|
| 25 |
-
((data['Close'] > data['MA5']) & (data['Close'].shift(1) < data['MA5']))
|
| 26 |
-
data['Sell Signal'] = ((data['Close'] > data['Upper Band']) & (data['Close'].shift(1) < data['Upper Band'])) | \
|
| 27 |
-
((data['Close'] < data['MA5']) & (data['Close'].shift(1) > data['MA5']))
|
| 28 |
-
|
| 29 |
-
# To properly track the price at which a signal occurs, we ensure signal markers are associated with the price
|
| 30 |
-
data['Signal Price'] = data.apply(lambda row: row['Close'] if row['Buy Signal'] or row['Sell Signal'] else np.nan, axis=1)
|
| 31 |
-
return data
|
| 32 |
-
|
| 33 |
-
def signal_table(data):
|
| 34 |
-
# Extracting signal events and necessary information
|
| 35 |
-
signals = pd.DataFrame()
|
| 36 |
-
signals['Date'] = data.index
|
| 37 |
-
signals['Price'] = data['Signal Price']
|
| 38 |
-
signals['Signal'] = np.where(data['Buy Signal'], 'Buy', np.where(data['Sell Signal'], 'Sell', ''))
|
| 39 |
-
signals = signals.dropna(subset=['Price']) # Remove rows where no signal occurred
|
| 40 |
-
return signals
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def plot_data(data):
|
| 44 |
-
plt.figure(figsize=(10, 5))
|
| 45 |
-
plt.plot(data['Close'], label='Close Price')
|
| 46 |
-
plt.plot(data['Upper Band'], label='Upper Bollinger Band', linestyle='--')
|
| 47 |
-
plt.plot(data['Middle Band'], label='Middle Bollinger Band', linestyle='--')
|
| 48 |
-
plt.plot(data['Lower Band'], label='Lower Bollinger Band', linestyle='--')
|
| 49 |
-
plt.plot(data['MA5'], label='5-Day MA', color='green', linestyle='-.')
|
| 50 |
-
plt.plot(data['MA10'], label='10-Day MA', color='red', linestyle='-.')
|
| 51 |
-
|
| 52 |
-
buy_signals = data[data['Buy Signal']]
|
| 53 |
-
sell_signals = data[data['Sell Signal']]
|
| 54 |
-
plt.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='green', s=100, label='Buy Signal')
|
| 55 |
-
plt.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', s=100, label='Sell Signal')
|
| 56 |
-
|
| 57 |
-
plt.title('Stock Price and Trading Signals')
|
| 58 |
-
plt.xlabel('Date')
|
| 59 |
-
plt.ylabel('Price')
|
| 60 |
-
plt.legend()
|
| 61 |
-
plt.grid(True)
|
| 62 |
-
plt.show()
|
| 63 |
-
|
| 64 |
-
def main():
|
| 65 |
-
st.sidebar.title("Settings")
|
| 66 |
-
ticker = st.sidebar.text_input("Enter the ticker symbol, e.g., 'AAPL'")
|
| 67 |
-
start_date = st.sidebar.date_input("Select the start date")
|
| 68 |
-
end_date = st.sidebar.date_input("Select the end date")
|
| 69 |
-
|
| 70 |
-
if st.sidebar.button("Analyze"):
|
| 71 |
-
data = fetch_data(ticker, start_date, end_date)
|
| 72 |
-
data = calculate_indicators(data)
|
| 73 |
-
data = identify_signals(data)
|
| 74 |
-
signals = signal_table(data)
|
| 75 |
-
plot_data(data)
|
| 76 |
-
st.pyplot(plt)
|
| 77 |
-
st.dataframe(signals)
|
| 78 |
-
|
| 79 |
-
if __name__ == "__main__":
|
| 80 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|