File size: 2,156 Bytes
72e8928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Required imports
import yfinance as yf
import pandas as pd
from scipy.signal import find_peaks
import plotly.graph_objects as go
import streamlit as st

# Streamlit UI setup
sidebar = st.sidebar
symbol = sidebar.text_input("Enter stock symbol:", "AAPL")
period = sidebar.selectbox("Select period:", ["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"])

# Download stock data
data = yf.download(symbol, period=period)

# Calculate Moving Averages
data['MA50'] = data['Close'].rolling(window=50).mean()
data['MA200'] = data['Close'].rolling(window=200).mean()
data['MA20'] = data['Close'].rolling(window=20).mean()

# Detecting significant peaks and troughs
peaks, _ = find_peaks(data['Close'], prominence=1)  # Adjust prominence as needed
troughs, _ = find_peaks(-data['Close'], prominence=1)  # Finding troughs by inverting the data

# Ensure there are peaks and troughs detected
if len(peaks) == 0 or len(troughs) == 0:
    st.write("No significant peaks or troughs detected in the selected period.")
else:
    # Using the most significant peak and trough for Fibonacci levels
    high_price = data.iloc[peaks]['Close'].max()
    low_price = data.iloc[troughs]['Close'].min()

    # Calculate Fibonacci Levels
    fib_levels = [0, 0.236, 0.382, 0.5, 0.618, 0.786, 1]
    price_diff = high_price - low_price
    for i, level in enumerate(fib_levels):
        data[f'Fib_Level_{i}'] = high_price - price_diff * level

    # Plotting
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='black')))
    fig.add_trace(go.Scatter(x=data.index, y=data['MA50'], name='50-Period MA', line=dict(color='blue')))
    fig.add_trace(go.Scatter(x=data.index, y=data['MA200'], name='200-Period MA', line=dict(color='red')))
    fig.add_trace(go.Scatter(x=data.index, y=data['MA20'], name='20-Period MA', line=dict(color='green')))

    # Add traces for Fibonacci Levels
    for i in range(7):
        fig.add_trace(go.Scatter(x=data.index, y=[data[f'Fib_Level_{i}'][0]]*len(data), name=f'Fib Level {fib_levels[i]*100}%', line=dict(dash='dot')))

    # Display the chart
    st.plotly_chart(fig)