Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yfinance as yf
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
# Sidebar inputs for stock symbol and period
|
7 |
+
sidebar = st.sidebar
|
8 |
+
symbol = sidebar.text_input("Enter stock symbol:", "AAPL")
|
9 |
+
data = yf.download(symbol, start="2020-01-01", end="2021-01-01")
|
10 |
+
|
11 |
+
# New sidebar inputs for defining the Fibonacci period
|
12 |
+
fib_start_date = sidebar.date_input("Select Fibonacci start date", value=pd.to_datetime("2020-01-01"), min_value=pd.to_datetime(data.index.min()), max_value=pd.to_datetime(data.index.max()))
|
13 |
+
fib_end_date = sidebar.date_input("Select Fibonacci end date", value=pd.to_datetime("2021-01-01"), min_value=pd.to_datetime(data.index.min()), max_value=pd.to_datetime(data.index.max()))
|
14 |
+
|
15 |
+
# Ensure start date is before end date
|
16 |
+
if fib_start_date >= fib_end_date:
|
17 |
+
st.error('Error: End date must be after start date.')
|
18 |
+
else:
|
19 |
+
# Filter data for the selected Fibonacci period
|
20 |
+
fib_data = data.loc[fib_start_date:fib_end_date]
|
21 |
+
|
22 |
+
# Find high and low prices within the Fibonacci period
|
23 |
+
high_price = fib_data['High'].max()
|
24 |
+
low_price = fib_data['Low'].min()
|
25 |
+
|
26 |
+
# Calculate Fibonacci Levels
|
27 |
+
price_diff = high_price - low_price
|
28 |
+
fib_levels = [0, 0.236, 0.382, 0.5, 0.618, 0.786, 1]
|
29 |
+
fib_values = [high_price - price_diff * level for level in fib_levels]
|
30 |
+
|
31 |
+
# Plotting
|
32 |
+
fig = go.Figure()
|
33 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='black')))
|
34 |
+
|
35 |
+
# Plot Fibonacci levels
|
36 |
+
for i, val in enumerate(fib_values):
|
37 |
+
fig.add_hline(y=val, line_dash="dot", annotation_text=f'Fib {fib_levels[i]*100}%', annotation_position="right")
|
38 |
+
|
39 |
+
# Calculate and plot moving averages
|
40 |
+
for ma in [20, 50, 200]:
|
41 |
+
data[f'MA{ma}'] = data['Close'].rolling(window=ma).mean()
|
42 |
+
fig.add_trace(go.Scatter(x=data.index, y=data[f'MA{ma}'], name=f'{ma}-Period MA'))
|
43 |
+
|
44 |
+
# Display the chart
|
45 |
+
st.plotly_chart(fig)
|