Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yfinance as yf
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import streamlit as st
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Place input fields in the sidebar
|
8 |
+
sidebar = st.sidebar
|
9 |
+
symbol = sidebar.text_input("Enter stock symbol:", "AAPL")
|
10 |
+
period = sidebar.selectbox("Select period:", ["1d", "1wk", "1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"])
|
11 |
+
|
12 |
+
# Download stock data
|
13 |
+
data = yf.download(symbol, period=period, interval='1d' if period in ['1d', '1wk'] else '1mo')
|
14 |
+
|
15 |
+
# Calculate Moving Averages if there are enough data points
|
16 |
+
if len(data) > 50:
|
17 |
+
data['MA50'] = data['Close'].rolling(window=50).mean()
|
18 |
+
if len(data) > 200:
|
19 |
+
data['MA200'] = data['Close'].rolling(window=200).mean()
|
20 |
+
if len(data) > 20:
|
21 |
+
data['MA20'] = data['Close'].rolling(window=20).mean()
|
22 |
+
|
23 |
+
# Finding highest and lowest price for the Fibonacci Retracement Levels
|
24 |
+
high_price = data['High'].max()
|
25 |
+
low_price = data['Low'].min()
|
26 |
+
|
27 |
+
# Calculate Fibonacci Levels
|
28 |
+
fib_levels = [0, 0.236, 0.382, 0.5, 0.618, 0.786, 1]
|
29 |
+
price_diff = high_price - low_price
|
30 |
+
data['Fib_Level_0'] = high_price
|
31 |
+
data['Fib_Level_1'] = high_price - price_diff * fib_levels[1]
|
32 |
+
data['Fib_Level_2'] = high_price - price_diff * fib_levels[2]
|
33 |
+
data['Fib_Level_3'] = high_price - price_diff * fib_levels[3]
|
34 |
+
data['Fib_Level_4'] = high_price - price_diff * fib_levels[4]
|
35 |
+
data['Fib_Level_5'] = high_price - price_diff * fib_levels[5]
|
36 |
+
data['Fib_Level_6'] = low_price
|
37 |
+
|
38 |
+
# Plotting
|
39 |
+
fig = go.Figure()
|
40 |
+
|
41 |
+
# Add trace for Close price
|
42 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='black')))
|
43 |
+
|
44 |
+
# Add traces for Moving Averages if they have been calculated
|
45 |
+
if 'MA50' in data:
|
46 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['MA50'], name='50-Period MA', line=dict(color='blue')))
|
47 |
+
if 'MA200' in data:
|
48 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['MA200'], name='200-Period MA', line=dict(color='red')))
|
49 |
+
if 'MA20' in data:
|
50 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['MA20'], name='20-Period MA', line=dict(color='green')))
|
51 |
+
|
52 |
+
# Add traces for Fibonacci Levels
|
53 |
+
for i in range(7):
|
54 |
+
fig.add_trace(go.Scatter(x=data.index, y=[data[f'Fib_Level_{i}'][0]]*len(data), name=f'Fib Level {fib_levels[i]*100}%', line=dict(dash='dot')))
|
55 |
+
|
56 |
+
# Display the chart
|
57 |
+
st.plotly_chart(fig)
|
58 |
+
|
59 |
+
|