netflypsb commited on
Commit
8fb5f16
·
verified ·
1 Parent(s): 40973df

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -9
app.py CHANGED
@@ -2,24 +2,51 @@ import yfinance as yf
2
  import pandas as pd
3
  import plotly.graph_objects as go
4
  import streamlit as st
 
5
 
6
- # Modify the interface to place input fields in a sidebar
7
  sidebar = st.sidebar
8
  symbol = sidebar.text_input("Enter stock symbol:", "AAPL")
9
  period = sidebar.selectbox("Select period:", ["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"])
10
 
11
- # Continue with the spell as before
12
  data = yf.download(symbol, period=period)
13
 
14
- data['Local Max'] = data['Close'][(data['Close'].shift(1) < data['Close']) & (data['Close'].shift(-1) < data['Close'])]
15
- data['Local Min'] = data['Close'][(data['Close'].shift(1) > data['Close']) & (data['Close'].shift(-1) > data['Close'])]
 
 
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  fig = go.Figure()
18
- fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close'))
19
- fig.add_trace(go.Scatter(x=data['Local Max'].dropna().index, y=data['Local Max'].dropna(), mode='markers', name='Resistance'))
20
- fig.add_trace(go.Scatter(x=data['Local Min'].dropna().index, y=data['Local Min'].dropna(), mode='markers', name='Support'))
21
 
22
- table_data = pd.concat([data['Local Max'].dropna(), data['Local Min'].dropna()]).sort_index()
23
- st.write(table_data.to_frame(name="Level"))
 
 
 
24
 
 
 
 
 
 
25
  st.plotly_chart(fig)
 
 
 
 
2
  import pandas as pd
3
  import plotly.graph_objects as go
4
  import streamlit as st
5
+ import numpy as np
6
 
7
+ # Place input fields in the sidebar
8
  sidebar = st.sidebar
9
  symbol = sidebar.text_input("Enter stock symbol:", "AAPL")
10
  period = sidebar.selectbox("Select period:", ["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"])
11
 
12
+ # Download stock data
13
  data = yf.download(symbol, period=period)
14
 
15
+ # Calculate Moving Averages
16
+ data['MA50'] = data['Close'].rolling(window=50).mean()
17
+ data['MA200'] = data['Close'].rolling(window=200).mean()
18
+ data['MA20'] = data['Close'].rolling(window=20).mean()
19
 
20
+ # Finding highest and lowest price for the Fibonacci Retracement Levels
21
+ high_price = data['High'].max()
22
+ low_price = data['Low'].min()
23
+
24
+ # Calculate Fibonacci Levels
25
+ fib_levels = [0, 0.236, 0.382, 0.5, 0.618, 0.786, 1]
26
+ price_diff = high_price - low_price
27
+ data['Fib_Level_0'] = high_price
28
+ data['Fib_Level_1'] = high_price - price_diff * fib_levels[1]
29
+ data['Fib_Level_2'] = high_price - price_diff * fib_levels[2]
30
+ data['Fib_Level_3'] = high_price - price_diff * fib_levels[3]
31
+ data['Fib_Level_4'] = high_price - price_diff * fib_levels[4]
32
+ data['Fib_Level_5'] = high_price - price_diff * fib_levels[5]
33
+ data['Fib_Level_6'] = low_price
34
+
35
+ # Plotting
36
  fig = go.Figure()
 
 
 
37
 
38
+ # Add traces for Close price and MAs
39
+ fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='black')))
40
+ fig.add_trace(go.Scatter(x=data.index, y=data['MA50'], name='50-Period MA', line=dict(color='blue')))
41
+ fig.add_trace(go.Scatter(x=data.index, y=data['MA200'], name='200-Period MA', line=dict(color='red')))
42
+ fig.add_trace(go.Scatter(x=data.index, y=data['MA20'], name='20-Period MA', line=dict(color='green')))
43
 
44
+ # Add traces for Fibonacci Levels
45
+ for i in range(7):
46
+ fig.add_trace(go.Scatter(x=data.index, y=[data[f'Fib_Level_{i}'][0]]*len(data), name=f'Fib Level {fib_levels[i]*100}%', line=dict(dash='dot')))
47
+
48
+ # Display the chart
49
  st.plotly_chart(fig)
50
+
51
+ # Note: This implementation assumes a simplistic approach to finding the high and low points for Fibonacci retracement levels.
52
+ # In practice, these should be determined based on significant peaks and troughs within a specific period of interest.