import yfinance as yf import pandas as pd import plotly.graph_objects as go import streamlit as st import numpy as np # Place input fields in the sidebar sidebar = st.sidebar symbol = sidebar.text_input("Enter stock symbol:", "AAPL") period = sidebar.selectbox("Select period:", ["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"]) # Download stock data data = yf.download(symbol, period=period) # Calculate Moving Averages data['MA50'] = data['Close'].rolling(window=50).mean() data['MA200'] = data['Close'].rolling(window=200).mean() data['MA20'] = data['Close'].rolling(window=20).mean() # Finding highest and lowest price for the Fibonacci Retracement Levels high_price = data['High'].max() low_price = data['Low'].min() # Calculate Fibonacci Levels fib_levels = [0, 0.236, 0.382, 0.5, 0.618, 0.786, 1] price_diff = high_price - low_price data['Fib_Level_0'] = high_price data['Fib_Level_1'] = high_price - price_diff * fib_levels[1] data['Fib_Level_2'] = high_price - price_diff * fib_levels[2] data['Fib_Level_3'] = high_price - price_diff * fib_levels[3] data['Fib_Level_4'] = high_price - price_diff * fib_levels[4] data['Fib_Level_5'] = high_price - price_diff * fib_levels[5] data['Fib_Level_6'] = low_price # Plotting fig = go.Figure() # Add traces for Close price and MAs fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='black'))) fig.add_trace(go.Scatter(x=data.index, y=data['MA50'], name='50-Period MA', line=dict(color='blue'))) fig.add_trace(go.Scatter(x=data.index, y=data['MA200'], name='200-Period MA', line=dict(color='red'))) fig.add_trace(go.Scatter(x=data.index, y=data['MA20'], name='20-Period MA', line=dict(color='green'))) # Add traces for Fibonacci Levels for i in range(7): fig.add_trace(go.Scatter(x=data.index, y=[data[f'Fib_Level_{i}'][0]]*len(data), name=f'Fib Level {fib_levels[i]*100}%', line=dict(dash='dot'))) # Display the chart st.plotly_chart(fig) # Note: This implementation assumes a simplistic approach to finding the high and low points for Fibonacci retracement levels. # In practice, these should be determined based on significant peaks and troughs within a specific period of interest.