Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from diffusers import StableDiffusionInpaintPipeline
|
5 |
+
from PIL import Image
|
6 |
+
from segment_anything import SamPredictor, sam_model_registry
|
7 |
+
|
8 |
+
device = "cuda"
|
9 |
+
sam_checkpoint = "/home/jupyter/diffusers/examples/sam_vit_h_4b8939.pth" # Added missing forward slash at the beginning
|
10 |
+
model_type = "vit_h"
|
11 |
+
# Load the model using the function from the registry and pass the checkpoint path
|
12 |
+
model_fn = sam_model_registry[model_type]
|
13 |
+
model = model_fn(checkpoint=sam_checkpoint)
|
14 |
+
|
15 |
+
# Move the model to the desired device (GPU)
|
16 |
+
model.to(device)
|
17 |
+
|
18 |
+
predictor = SamPredictor(model)
|
19 |
+
|
20 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
21 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
) # Removed space
|
24 |
+
|
25 |
+
pipe = pipe.to(device)
|
26 |
+
|
27 |
+
selected_pixels = []
|
28 |
+
|
29 |
+
|
30 |
+
with gr.Blocks() as demo:
|
31 |
+
with gr.Row():
|
32 |
+
input_img = gr.Image(label="Input") # Removed space
|
33 |
+
mask_img = gr.Image(label="Mask") # Corrected "Mas" to "Mask"
|
34 |
+
output_img = gr.Image(label="Output") # Removed space
|
35 |
+
|
36 |
+
with gr.Row():
|
37 |
+
prompt_text = gr.Textbox(lines=1, label="Prompt") # Removed space
|
38 |
+
|
39 |
+
with gr.Row():
|
40 |
+
submit = gr.Button("Submit")
|
41 |
+
|
42 |
+
def generate_mask(image, evt: gr.SelectData):
|
43 |
+
selected_pixels.append(evt.index) # Removed space
|
44 |
+
|
45 |
+
predictor.set_image(image) # Removed space
|
46 |
+
input_points = np.array(selected_pixels)
|
47 |
+
input_labels = np.ones(input_points.shape[0])
|
48 |
+
mask, _, _ = predictor.predict(
|
49 |
+
point_coords=input_points,
|
50 |
+
point_labels=input_labels,
|
51 |
+
multimask_output=False
|
52 |
+
)
|
53 |
+
# (n, sz, sz)
|
54 |
+
mask = Image.fromarray(mask[0, :, :]) # Removed space
|
55 |
+
return mask
|
56 |
+
|
57 |
+
def inpaint(image, mask, prompt):
|
58 |
+
image = Image.fromarray(image) # Removed space
|
59 |
+
mask = Image.fromarray(mask) # Removed space
|
60 |
+
|
61 |
+
image = image.resize((512, 512))
|
62 |
+
mask = mask.resize((512, 512))
|
63 |
+
|
64 |
+
output = pipe(
|
65 |
+
prompt=prompt,
|
66 |
+
image=image,
|
67 |
+
mask_image=mask,
|
68 |
+
).images[0]
|
69 |
+
|
70 |
+
return output
|
71 |
+
|
72 |
+
input_img.select(generate_mask, [input_img], [mask_img])
|
73 |
+
submit.click(inpaint, inputs=[input_img, mask_img, prompt_text], outputs=[output_img])
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
demo.launch()
|