Spaces:
Build error
Build error
import gradio as gr | |
import numpy as np | |
import urllib.request | |
# Downloading the image and saving it in the local folder | |
# urllib.request.urlretrieve('https://cdn.discordapp.com/attachments/682736875483430985/1089711182094553108/Dopeshott_young_black_femal_doctor_19e26be2-6801-4aed-b481-793b1e77a984.png', 'doctor.png') | |
# Dummy data | |
data = np.array([ | |
[65, 1, 1, 1, 0.5], | |
[45, 0, 0, 0, 0.2], | |
[70, 1, 0, 1, 0.8], | |
[55, 0, 1, 0, 0.6], | |
[50, 1, 1, 1, 0.7] | |
]) | |
features = ['Age', 'Sex', 'Smoking', 'Treatment', 'Chemotherapy'] | |
sex_options = ['Male', 'Female'] | |
smoking_options = ['No', 'Yes'] | |
treatment_options = ['No', 'Yes'] | |
chemo_options = ['No', 'Yes'] | |
# Function to predict cancer | |
def predict_cancer(age, sex, smoking, treatment, chemotherapy): | |
# Format input | |
sex = 0 if sex == 'Male' else 1 | |
smoking = 0 if smoking == 'No' else 1 | |
treatment = 0 if treatment == 'No' else 1 | |
chemotherapy = 0 if chemotherapy == 'No' else 1 | |
input_data = np.array([[age, sex, smoking, treatment, chemotherapy]]) | |
# Dummy prediction | |
prob_alive = np.random.choice([0.8, 0.7, 0.65, 0.548, 0.78]) | |
prediction = 'Alive' if prob_alive >= 0.5 else 'Dead' | |
return f'{prediction} with a survival probability of {prob_alive:.3f}' | |
# Interface | |
age_slider = gr.inputs.Slider(minimum=20, maximum=90, step=1, label='Age') | |
sex_dropdown = gr.inputs.Dropdown(choices=sex_options, label='Sex') | |
smoking_dropdown = gr.inputs.Dropdown(choices=smoking_options, label='Smoking') | |
treatment_dropdown = gr.inputs.Dropdown(choices=treatment_options, label='Treatment') | |
chemo_dropdown = gr.inputs.Dropdown(choices=chemo_options, label='Chemotherapy') | |
inputs = [age_slider, sex_dropdown, smoking_dropdown, treatment_dropdown, chemo_dropdown] | |
outputs = gr.outputs.Textbox(label='Prediction') | |
css = """ | |
.sidebar-content { | |
padding: 20px; | |
background-color: #f5f5f5; | |
box-shadow: 1px 1px 10px #ccc; | |
margin-bottom: 20px; | |
border-radius: 10px; | |
} | |
.doctor-img-container { | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
} | |
.doctor-img { | |
height: auto; | |
width: auto; | |
max-width: 100%; | |
max-height: 100%; | |
} | |
""" | |
sidebar = [ | |
# Adding image of a doctor to the sidebar | |
'<div class="doctor-img-container"><img class="doctor-img" src="doctor.png" alt="A medical doctor"></div>', | |
'This is a cancer prediction app', | |
] | |
iface = gr.Interface( | |
fn=predict_cancer, | |
inputs=inputs, | |
outputs=outputs, | |
title='Cancer Predictor', | |
description='Predicts the risk of survival in cancer patients.\nChoose the input values and the prediction will be displayed automatically.', | |
sidebar=sidebar, | |
css=css | |
) | |
iface.launch() |