AITrans_late_script / whisperui.py
eabo's picture
'add translation'
c42dafc
import whisper
import gradio as gr
import os
from pytube import YouTube
class WhisperModelUI(object):
def __init__(self, ui_obj):
self.name = "Whisper Model Processor UI"
self.description = "This class is designed to build UI for our Whisper Model"
self.ui_obj = ui_obj
self.audio_files_list = ['No content']
self.whisper_model = whisper.model.Whisper
self.video_store_path = 'data_files'
def load_content(self, file_list):
video_out_path = os.path.join(os.getcwd(), self.video_store_path)
self.audio_files_list = [f for f in os.listdir(video_out_path)
if os.path.isfile(video_out_path + "/" + f)
and (f.endswith(".mp4") or f.endswith('mp3'))]
return gr.Dropdown.update(choices=self.audio_files_list)
def load_whisper_model(self, model_type):
try:
asr_model = whisper.load_model(model_type.lower())
self.whisper_model = asr_model
status = "{} ロード完了".format(model_type)
except:
status = "ロードエラー {} model".format(model_type)
return status, str(self.whisper_model)
def load_youtube_video(self, video_url):
video_out_path = os.path.join(os.getcwd(), self.video_store_path)
yt = YouTube(video_url)
local_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by(
'resolution').desc().first().download(video_out_path)
return local_video_path
def get_video_to_text(self,
transcribe_or_decode,
video_list_dropdown_file_name,
language_detect,
translate_or_transcribe
):
debug_text = ""
try:
video_out_path = os.path.join(os.getcwd(), 'data_files')
video_full_path = os.path.join(video_out_path, video_list_dropdown_file_name)
if not os.path.isfile(video_full_path):
video_text = "Selected video/audio is could not be located.."
else:
video_text = "Bad choice or result.."
if transcribe_or_decode == 'Transcribe':
video_text, debug_text = self.run_asr_with_transcribe(video_full_path, language_detect,
translate_or_transcribe)
elif transcribe_or_decode == 'Decode':
audio = whisper.load_audio(video_full_path)
video_text, debug_text = self.run_asr_with_decode(audio, language_detect,
translate_or_transcribe)
except:
video_text = "Error processing audio..."
return video_text, debug_text
def run_asr_with_decode(self, audio, language_detect, translate_or_transcribe):
debug_info = "None.."
if 'encoder' not in dir(self.whisper_model) or 'decoder' not in dir(self.whisper_model):
return "Model is not loaded, please load the model first", debug_info
if self.whisper_model.encoder is None or self.whisper_model.decoder is None:
return "Model is not loaded, please load the model first", debug_info
try:
# pad/trim it to fit 30 seconds
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(self.whisper_model.device)
if language_detect == 'Detect':
# detect the spoken language
_, probs = self.whisper_model.detect_language(mel)
# print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
# mps crash if fp16=False is not used
task_type = 'transcribe'
if translate_or_transcribe == 'Translate':
task_type = 'translate'
if language_detect != 'Detect':
options = whisper.DecodingOptions(fp16=False,
language=language_detect,
task=task_type)
else:
options = whisper.DecodingOptions(fp16=False,
task=task_type)
result = whisper.decode(self.whisper_model, mel, options)
result_text = result.text
debug_info = str(result)
except:
result_text = "Error handing audio to text.."
return result_text, debug_info
def run_asr_with_transcribe(self, audio_path, language_detect, translate_or_transcribe):
result_text = "Error..."
debug_info = "None.."
if 'encoder' not in dir(self.whisper_model) or 'decoder' not in dir(self.whisper_model):
return "Model is not loaded, please load the model first", debug_info
if self.whisper_model.encoder is None or self.whisper_model.decoder is None:
return "Model is not loaded, please load the model first", debug_info
task_type = 'transcribe'
if translate_or_transcribe == 'Translate':
task_type = 'translate'
transcribe_options = dict(beam_size=5, best_of=5,
fp16=False,
task=task_type,
without_timestamps=False)
if language_detect != 'Detect':
transcribe_options['language'] = language_detect
transcription = self.whisper_model.transcribe(audio_path, **transcribe_options)
if transcription is not None:
result_text = transcription['text']
debug_info = str(transcription)
return result_text, debug_info
def create_whisper_ui(self):
with self.ui_obj:
gr.Markdown("AI翻訳・書き起こし")
with gr.Tabs():
with gr.TabItem("YouTubeURLから"):
with gr.Row():
with gr.Column():
asr_model_type = gr.Radio(['Tiny', 'Base', 'Small', 'Medium', 'Large'],
label="モデルタイプ(精度)",
value='Base'
)
model_status_lbl = gr.Label(label="ローディングステータス")
load_model_btn = gr.Button("モデルをロード")
youtube_url = gr.Textbox(label="YouTube URL",
# value="https://www.youtube.com/watch?v=Y2nHd7El8iw"
value=""
)
youtube_video = gr.Video(label="ビデオ")
get_video_btn = gr.Button("YouTubeURLをロード")
with gr.Column():
video_list_dropdown = gr.Dropdown(self.audio_files_list, label="保存済みビデオ")
load_video_list_btn = gr.Button("全てのビデオをロード")
transcribe_or_decode = gr.Radio(['Transcribe', 'Decode'],
label="オプション(Transcribe = 書き起こし)",
value='Transcribe'
)
language_detect = gr.Dropdown(['Detect', 'English', 'Hindi', 'Japanese'],
label="自動検知か言語を選択")
translate_or_transcribe = gr.Dropdown(['Transcribe', 'Translate'],
label="Translate(翻訳)か Transcribe(書き起こし)を選択")
get_video_txt_btn = gr.Button("変換開始!")
video_text = gr.Textbox(label="テキスト", lines=10)
with gr.TabItem("デバッグ情報"):
with gr.Row():
with gr.Column():
debug_text = gr.Textbox(label="Debug Details", lines=20)
load_model_btn.click(
self.load_whisper_model,
[
asr_model_type
],
[
model_status_lbl,
debug_text
]
)
get_video_btn.click(
self.load_youtube_video,
[
youtube_url
],
[
youtube_video
]
)
load_video_list_btn.click(
self.load_content,
[
video_list_dropdown
],
[
video_list_dropdown
]
)
get_video_txt_btn.click(
self.get_video_to_text,
[
transcribe_or_decode,
video_list_dropdown,
language_detect,
translate_or_transcribe
],
[
video_text,
debug_text
]
)
def launch_ui(self):
self.ui_obj.launch(debug=True)