import whisper import os def whisper_decode(model, audio): # model = whisper.load_model("base") audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs = model.detect_language(mel) print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio options = whisper.DecodingOptions( task='translate', fp16=False) result = whisper.decode(model, mel, options) # print the recognized text print(result.text) def whisper_transcribe(model, audio): result = model.transcribe(audio) print(result["text"]) def try_whisper_model(model_type, choice): model = whisper.load_model(model_type) data_file = os.path.join(os.path.curdir, 'data_files', 'bharat.mp3') audio = whisper.load_audio(data_file) if choice == 'decode': whisper_decode(model, audio) elif choice == 'transcribe': whisper_transcribe(model, audio)