Spaces:
Sleeping
Sleeping
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| from torch.nn.utils.rnn import pad_sequence | |
| from utils.data_utils import * | |
| from models.tts.base.tts_dataset import ( | |
| TTSDataset, | |
| TTSCollator, | |
| TTSTestDataset, | |
| TTSTestCollator, | |
| ) | |
| from utils.tokenizer import tokenize_audio | |
| class VALLEDataset(TTSDataset): | |
| def __init__(self, cfg, dataset, is_valid=False): | |
| super().__init__(cfg, dataset, is_valid=is_valid) | |
| """ | |
| Args: | |
| cfg: config | |
| dataset: dataset name | |
| is_valid: whether to use train or valid dataset | |
| """ | |
| assert isinstance(dataset, str) | |
| assert cfg.preprocess.use_acoustic_token == True | |
| if cfg.preprocess.use_acoustic_token: | |
| self.utt2acousticToken_path = {} | |
| for utt_info in self.metadata: | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| self.utt2acousticToken_path[utt] = os.path.join( | |
| cfg.preprocess.processed_dir, | |
| dataset, | |
| cfg.preprocess.acoustic_token_dir, # code | |
| uid + ".npy", | |
| ) | |
| def __len__(self): | |
| return super().__len__() | |
| def get_metadata(self): | |
| metadata_filter = [] | |
| with open(self.metafile_path, "r", encoding="utf-8") as f: | |
| metadata = json.load(f) | |
| for utt_info in metadata: | |
| duration = utt_info['Duration'] | |
| if duration >= self.cfg.preprocess.max_duration or duration <= self.cfg.preprocess.min_duration: | |
| continue | |
| metadata_filter.append(utt_info) | |
| return metadata_filter | |
| def get_dur(self, idx): | |
| utt_info = self.metadata[idx] | |
| return utt_info['Duration'] | |
| def __getitem__(self, index): | |
| single_feature = super().__getitem__(index) | |
| utt_info = self.metadata[index] | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| # acoustic token | |
| if self.cfg.preprocess.use_acoustic_token: | |
| acoustic_token = np.load(self.utt2acousticToken_path[utt]) | |
| if "target_len" not in single_feature.keys(): | |
| single_feature["target_len"] = acoustic_token.shape[0] | |
| single_feature["acoustic_token"] = acoustic_token # [T, 8] | |
| return single_feature | |
| class VALLECollator(TTSCollator): | |
| def __init__(self, cfg): | |
| super().__init__(cfg) | |
| def __call__(self, batch): | |
| parsed_batch_features = super().__call__(batch) | |
| return parsed_batch_features | |
| class VALLETestDataset(TTSTestDataset): | |
| def __init__(self,args, cfg): | |
| super().__init__(args, cfg) | |
| # prepare data | |
| assert cfg.preprocess.use_acoustic_token == True | |
| if cfg.preprocess.use_acoustic_token: | |
| self.utt2acousticToken = {} | |
| for utt_info in self.metadata: | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| # extract acoustic token | |
| audio_file = utt_info["Audio_pormpt_path"] | |
| encoded_frames = tokenize_audio(self.audio_tokenizer, audio_file) | |
| audio_prompt_token = encoded_frames[0][0].transpose(2, 1).squeeze(0).cpu().numpy() | |
| self.utt2acousticToken[utt] = audio_prompt_token | |
| def __getitem__(self, index): | |
| utt_info = self.metadata[index] | |
| dataset = utt_info["Dataset"] | |
| uid = utt_info["Uid"] | |
| utt = "{}_{}".format(dataset, uid) | |
| single_feature = dict() | |
| # acoustic token | |
| if self.cfg.preprocess.use_acoustic_token: | |
| acoustic_token = self.utt2acousticToken[utt] | |
| if "target_len" not in single_feature.keys(): | |
| single_feature["target_len"] = acoustic_token.shape[0] | |
| single_feature["acoustic_token"] = acoustic_token # [T, 8] | |
| # phone sequence todo | |
| if self.cfg.preprocess.use_phone: | |
| single_feature["phone_seq"] = np.array(self.utt2seq[utt]) | |
| single_feature["phone_len"] = len(self.utt2seq[utt]) | |
| single_feature["pmt_phone_seq"] = np.array(self.utt2pmtseq[utt]) | |
| single_feature["pmt_phone_len"] = len(self.utt2pmtseq[utt]) | |
| return single_feature | |
| def get_metadata(self): | |
| with open(self.metafile_path, "r", encoding="utf-8") as f: | |
| metadata = json.load(f) | |
| return metadata | |
| def __len__(self): | |
| return len(self.metadata) | |
| class VALLETestCollator(TTSTestCollator): | |
| def __init__(self, cfg): | |
| self.cfg = cfg | |
| def __call__(self, batch): | |
| packed_batch_features = dict() | |
| for key in batch[0].keys(): | |
| if key == "target_len": | |
| packed_batch_features["target_len"] = torch.LongTensor( | |
| [b["target_len"] for b in batch] | |
| ) | |
| masks = [ | |
| torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch | |
| ] | |
| packed_batch_features["mask"] = pad_sequence( | |
| masks, batch_first=True, padding_value=0 | |
| ) | |
| elif key == "phone_len": | |
| packed_batch_features["phone_len"] = torch.LongTensor( | |
| [b["phone_len"] for b in batch] | |
| ) | |
| masks = [ | |
| torch.ones((b["phone_len"], 1), dtype=torch.long) for b in batch | |
| ] | |
| packed_batch_features["phn_mask"] = pad_sequence( | |
| masks, batch_first=True, padding_value=0 | |
| ) | |
| elif key == "pmt_phone_len": | |
| packed_batch_features["pmt_phone_len"] = torch.LongTensor( | |
| [b["pmt_phone_len"] for b in batch] | |
| ) | |
| masks = [ | |
| torch.ones((b["pmt_phone_len"], 1), dtype=torch.long) for b in batch | |
| ] | |
| packed_batch_features["pmt_phone_len_mask"] = pad_sequence( | |
| masks, batch_first=True, padding_value=0 | |
| ) | |
| elif key == "audio_len": | |
| packed_batch_features["audio_len"] = torch.LongTensor( | |
| [b["audio_len"] for b in batch] | |
| ) | |
| masks = [ | |
| torch.ones((b["audio_len"], 1), dtype=torch.long) for b in batch | |
| ] | |
| else: | |
| values = [torch.from_numpy(b[key]) for b in batch] | |
| packed_batch_features[key] = pad_sequence( | |
| values, batch_first=True, padding_value=0 | |
| ) | |
| return packed_batch_features | |