Spaces:
Sleeping
Sleeping
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import copy | |
| from functools import partial | |
| from typing import Any, Callable, List, Optional, Union | |
| import torch | |
| from torch import Tensor, nn | |
| from torch.nn import functional as F | |
| from modules.norms import AdaptiveLayerNorm, LayerNorm, BalancedBasicNorm, IdentityNorm | |
| from modules.transformer import MultiheadAttention | |
| from modules.general.scaling import BalancedDoubleSwish | |
| class TransformerEncoderLayer(nn.Module): | |
| __constants__ = ["batch_first", "norm_first"] | |
| def __init__( | |
| self, | |
| d_model: int, | |
| nhead: int, | |
| dim_feedforward: int = 2048, | |
| dropout: float = 0.1, | |
| activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
| batch_first: bool = False, | |
| norm_first: bool = False, | |
| device=None, | |
| dtype=None, | |
| linear1_self_attention_cls: nn.Module = nn.Linear, | |
| linear2_self_attention_cls: nn.Module = nn.Linear, | |
| linear1_feedforward_cls: nn.Module = nn.Linear, | |
| linear2_feedforward_cls: nn.Module = nn.Linear, | |
| layer_norm_cls: nn.Module = LayerNorm, | |
| layer_norm_eps: float = 1e-5, | |
| adaptive_layer_norm=False, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super(TransformerEncoderLayer, self).__init__() | |
| self.self_attn = MultiheadAttention( | |
| d_model, | |
| nhead, | |
| dropout=dropout, | |
| batch_first=batch_first, | |
| linear1_cls=linear1_self_attention_cls, | |
| linear2_cls=linear2_self_attention_cls, | |
| **factory_kwargs, | |
| ) | |
| # Implementation of Feedforward model | |
| self.linear1 = linear1_feedforward_cls( | |
| d_model, dim_feedforward, **factory_kwargs | |
| ) | |
| self.dropout = nn.Dropout(dropout) | |
| self.linear2 = linear2_feedforward_cls( | |
| dim_feedforward, d_model, **factory_kwargs | |
| ) | |
| self.norm_first = norm_first | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(dropout) | |
| if isinstance(activation, str): | |
| activation = _get_activation_fn(activation) | |
| elif isinstance(activation, partial): | |
| activation = activation(d_model) | |
| elif activation == BalancedDoubleSwish: | |
| activation = BalancedDoubleSwish(d_model) | |
| self.activation = activation | |
| norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs) | |
| if layer_norm_cls == IdentityNorm: | |
| norm2 = BalancedBasicNorm( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| else: | |
| norm2 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| if adaptive_layer_norm: | |
| self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
| self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
| else: | |
| self.norm1 = norm1 | |
| self.norm2 = norm2 | |
| def __setstate__(self, state): | |
| super(TransformerEncoderLayer, self).__setstate__(state) | |
| if not hasattr(self, "activation"): | |
| self.activation = F.relu | |
| def forward( | |
| self, | |
| src: Tensor, | |
| src_mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| r"""Pass the input through the encoder layer. | |
| Args: | |
| src: the sequence to the encoder layer (required). | |
| src_mask: the mask for the src sequence (optional). | |
| src_key_padding_mask: the mask for the src keys per batch (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| x, stage_embedding = src, None | |
| is_src_tuple = False | |
| if isinstance(src, tuple): | |
| x, stage_embedding = src | |
| is_src_tuple = True | |
| if src_key_padding_mask is not None: | |
| _skpm_dtype = src_key_padding_mask.dtype | |
| if _skpm_dtype != torch.bool and not torch.is_floating_point( | |
| src_key_padding_mask | |
| ): | |
| raise AssertionError( | |
| "only bool and floating types of key_padding_mask are supported" | |
| ) | |
| if self.norm_first: | |
| x = x + self._sa_block( | |
| self.norm1(x, stage_embedding), | |
| src_mask, | |
| src_key_padding_mask, | |
| ) | |
| x = x + self._ff_block(self.norm2(x, stage_embedding)) | |
| else: | |
| x = self.norm1( | |
| x + self._sa_block(x, src_mask, src_key_padding_mask), | |
| stage_embedding, | |
| ) | |
| x = self.norm2(x + self._ff_block(x), stage_embedding) | |
| if is_src_tuple: | |
| return (x, stage_embedding) | |
| return x | |
| def _sa_block( | |
| self, | |
| x: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| ) -> Tensor: | |
| x = self.self_attn( | |
| x, | |
| x, | |
| x, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=False, | |
| )[0] | |
| return self.dropout1(x) | |
| def _ff_block(self, x: Tensor) -> Tensor: | |
| x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
| return self.dropout2(x) | |
| class TransformerEncoder(nn.Module): | |
| """TransformerEncoder is a stack of N encoder layers.""" | |
| def __init__(self, encoder_layer, num_layers, norm=None): | |
| super(TransformerEncoder, self).__init__() | |
| self.layers = _get_clones(encoder_layer, num_layers) | |
| self.num_layers = num_layers | |
| self.norm = norm | |
| def forward( | |
| self, | |
| src: Tensor, | |
| mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| return_layer_states: bool = False, | |
| ) -> Tensor: | |
| # Pass the input through the encoder layers | |
| output = src | |
| layer_states = [] if return_layer_states else None | |
| for mod in self.layers: | |
| output = self._apply_module(mod, output, mask, src_key_padding_mask, layer_states) | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| return (layer_states, output) if return_layer_states else output | |
| def _apply_module(self, module, output, mask, key_padding_mask, layer_states): | |
| # Apply a single transformer module | |
| output = module(output, src_mask=mask, src_key_padding_mask=key_padding_mask) | |
| if layer_states is not None: | |
| layer_states.append(output) | |
| return output | |
| class TransformerDecoderLayer(nn.Module): | |
| __constants__ = ["batch_first", "norm_first"] | |
| def __init__( | |
| self, | |
| d_model: int, | |
| nhead: int, | |
| dim_feedforward: int = 2048, | |
| dropout: float = 0.1, | |
| activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
| linear1_self_attention_cls: nn.Module = nn.Linear, | |
| linear2_self_attention_cls: nn.Module = nn.Linear, | |
| linear1_feedforward_cls: nn.Module = nn.Linear, | |
| linear2_feedforward_cls: nn.Module = nn.Linear, | |
| batch_first: bool = False, | |
| norm_first: bool = False, | |
| device=None, | |
| dtype=None, | |
| layer_norm_cls: nn.Module = LayerNorm, | |
| layer_norm_eps: float = 1e-5, | |
| adaptive_layer_norm=False, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super(TransformerDecoderLayer, self).__init__() | |
| self.self_attn = MultiheadAttention( | |
| d_model, | |
| nhead, | |
| dropout=dropout, | |
| batch_first=batch_first, | |
| linear1_cls=linear1_self_attention_cls, | |
| linear2_cls=linear2_self_attention_cls, | |
| **factory_kwargs, | |
| ) | |
| self.multihead_attn = MultiheadAttention( | |
| d_model, | |
| nhead, | |
| dropout=dropout, | |
| batch_first=batch_first, | |
| linear1_cls=linear1_self_attention_cls, | |
| linear2_cls=linear2_self_attention_cls, | |
| **factory_kwargs, | |
| ) | |
| self.linear1 = linear1_feedforward_cls( | |
| d_model, dim_feedforward, **factory_kwargs | |
| ) | |
| self.dropout = nn.Dropout(dropout) | |
| self.linear2 = linear2_feedforward_cls( | |
| dim_feedforward, d_model, **factory_kwargs | |
| ) | |
| self.norm_first = norm_first | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(dropout) | |
| self.dropout3 = nn.Dropout(dropout) | |
| self.activation = self._get_activation_fn(activation) | |
| self.norm1, self.norm2, self.norm3 = self._init_norm_layers( | |
| d_model, layer_norm_cls, layer_norm_eps, adaptive_layer_norm, factory_kwargs | |
| ) | |
| def forward( | |
| self, | |
| tgt: Tensor, | |
| memory: Tensor, | |
| tgt_mask: Optional[Tensor] = None, | |
| memory_mask: Optional[Tensor] = None, | |
| tgt_key_padding_mask: Optional[Tensor] = None, | |
| memory_key_padding_mask: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| r"""Pass the inputs (and mask) through the decoder layer. | |
| Args: | |
| tgt: the sequence to the decoder layer (required). | |
| memory: the sequence from the last layer of the encoder (required). | |
| tgt_mask: the mask for the tgt sequence (optional). | |
| memory_mask: the mask for the memory sequence (optional). | |
| tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
| memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| tgt_is_tuple = False | |
| if isinstance(tgt, tuple): | |
| x, stage_embedding = tgt | |
| tgt_is_tuple = True | |
| else: | |
| x, stage_embedding = tgt, None | |
| if self.norm_first: | |
| x = x + self._sa_block( | |
| self.norm1(x, stage_embedding), tgt_mask, tgt_key_padding_mask | |
| ) | |
| x = x + self._mha_block( | |
| self.norm2(x, stage_embedding), | |
| memory, | |
| memory_mask, | |
| memory_key_padding_mask, | |
| ) | |
| x = x + self._ff_block(self.norm3(x, stage_embedding)) | |
| else: | |
| x = self.norm1( | |
| x + self._sa_block(x, tgt_mask, tgt_key_padding_mask), | |
| stage_embedding, | |
| ) | |
| x = self.norm2( | |
| x | |
| + self._mha_block( | |
| x, memory, memory_mask, memory_key_padding_mask | |
| ), | |
| stage_embedding, | |
| ) | |
| x = self.norm3(x + self._ff_block(x), stage_embedding) | |
| if tgt_is_tuple: | |
| return (x, stage_embedding) | |
| return x | |
| def _sa_block( | |
| self, | |
| x: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| ) -> Tensor: | |
| x = self.self_attn( | |
| x, | |
| x, | |
| x, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=False, | |
| )[0] | |
| return self.dropout1(x) | |
| def _mha_block( | |
| self, | |
| x: Tensor, | |
| mem: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| ) -> Tensor: | |
| x = self.multihead_attn( | |
| x, | |
| mem, | |
| mem, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=False, | |
| )[0] | |
| return self.dropout2(x) | |
| def _ff_block(self, x: Tensor) -> Tensor: | |
| x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
| return self.dropout3(x) | |
| def _get_activation_fn(self, activation): | |
| if isinstance(activation, str): | |
| return _get_activation_fn(activation) | |
| elif callable(activation): | |
| return activation | |
| else: | |
| raise ValueError("Unsupported activation type") | |
| def _init_norm_layers(self, d_model, layer_norm_cls, layer_norm_eps, adaptive_layer_norm, factory_kwargs): | |
| if adaptive_layer_norm: | |
| return ( | |
| AdaptiveLayerNorm(d_model, layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)), | |
| AdaptiveLayerNorm(d_model, layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)), | |
| AdaptiveLayerNorm(d_model, layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)) | |
| ) | |
| else: | |
| return ( | |
| layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs), | |
| layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs), | |
| layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs) if layer_norm_cls != IdentityNorm | |
| else BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs) | |
| ) | |
| def _get_clones(module, N): | |
| return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
| def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]: | |
| if activation == "relu": | |
| return F.relu | |
| elif activation == "gelu": | |
| return F.gelu | |
| raise RuntimeError( | |
| "activation should be relu/gelu, not {}".format(activation) | |
| ) | |
| class Transpose(nn.Identity): | |
| """(N, T, D) -> (N, D, T)""" | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| return input.transpose(1, 2) | |