|
import os |
|
import argparse |
|
import numpy as np |
|
import torch |
|
|
|
from scipy.io.wavfile import read |
|
from omegaconf import OmegaConf |
|
|
|
MATPLOTLIB_FLAG = False |
|
|
|
|
|
def load_wav_to_torch(full_path): |
|
sampling_rate, data = read(full_path) |
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate |
|
|
|
|
|
f0_bin = 256 |
|
f0_max = 1100.0 |
|
f0_min = 50.0 |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
|
|
|
|
def f0_to_coarse(f0): |
|
is_torch = isinstance(f0, torch.Tensor) |
|
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * \ |
|
np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * \ |
|
(f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 |
|
|
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 |
|
f0_coarse = ( |
|
f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) |
|
assert f0_coarse.max() <= 255 and f0_coarse.min( |
|
) >= 1, (f0_coarse.max(), f0_coarse.min()) |
|
return f0_coarse |
|
|
|
|
|
def get_hparams(init=True): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-c', '--config', type=str, default="./configs/base.yaml", |
|
help='YAML file for configuration') |
|
args = parser.parse_args() |
|
hparams = OmegaConf.load(args.config) |
|
model_dir = os.path.join("./logs", hparams.train.model) |
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
os.system(f"cp {args.config} {config_save_path}") |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|