|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
|
|
from torch.nn import Conv1d |
|
from torch.nn import ConvTranspose1d |
|
from torch.nn.utils import weight_norm |
|
from torch.nn.utils import remove_weight_norm |
|
|
|
from .nsf import SourceModuleHnNSF |
|
from .bigv import init_weights, SnakeBeta, AMPBlock |
|
from .alias import Activation1d |
|
|
|
|
|
class SpeakerAdapter(nn.Module): |
|
|
|
def __init__(self, |
|
speaker_dim, |
|
adapter_dim, |
|
epsilon=1e-5 |
|
): |
|
super(SpeakerAdapter, self).__init__() |
|
self.speaker_dim = speaker_dim |
|
self.adapter_dim = adapter_dim |
|
self.epsilon = epsilon |
|
self.W_scale = nn.Linear(self.speaker_dim, self.adapter_dim) |
|
self.W_bias = nn.Linear(self.speaker_dim, self.adapter_dim) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
torch.nn.init.constant_(self.W_scale.weight, 0.0) |
|
torch.nn.init.constant_(self.W_scale.bias, 1.0) |
|
torch.nn.init.constant_(self.W_bias.weight, 0.0) |
|
torch.nn.init.constant_(self.W_bias.bias, 0.0) |
|
|
|
def forward(self, x, speaker_embedding): |
|
x = x.transpose(1, -1) |
|
mean = x.mean(dim=-1, keepdim=True) |
|
var = ((x - mean) ** 2).mean(dim=-1, keepdim=True) |
|
std = (var + self.epsilon).sqrt() |
|
y = (x - mean) / std |
|
scale = self.W_scale(speaker_embedding) |
|
bias = self.W_bias(speaker_embedding) |
|
y *= scale.unsqueeze(1) |
|
y += bias.unsqueeze(1) |
|
y = y.transpose(1, -1) |
|
return y |
|
|
|
|
|
class Generator(torch.nn.Module): |
|
|
|
def __init__(self, hp): |
|
super(Generator, self).__init__() |
|
self.hp = hp |
|
self.num_kernels = len(hp.gen.resblock_kernel_sizes) |
|
self.num_upsamples = len(hp.gen.upsample_rates) |
|
|
|
self.adapter = SpeakerAdapter(hp.vits.spk_dim, hp.gen.upsample_input) |
|
|
|
self.conv_pre = nn.utils.weight_norm( |
|
Conv1d(hp.gen.upsample_input, hp.gen.upsample_initial_channel, 7, 1, padding=3)) |
|
|
|
self.f0_upsamp = torch.nn.Upsample( |
|
scale_factor=np.prod(hp.gen.upsample_rates)) |
|
self.m_source = SourceModuleHnNSF() |
|
self.noise_convs = nn.ModuleList() |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(hp.gen.upsample_rates, hp.gen.upsample_kernel_sizes)): |
|
|
|
|
|
self.ups.append(nn.ModuleList([ |
|
weight_norm(ConvTranspose1d(hp.gen.upsample_initial_channel // (2 ** i), |
|
hp.gen.upsample_initial_channel // ( |
|
2 ** (i + 1)), |
|
k, u, padding=(k - u) // 2)) |
|
])) |
|
|
|
if i + 1 < len(hp.gen.upsample_rates): |
|
stride_f0 = np.prod(hp.gen.upsample_rates[i + 1:]) |
|
stride_f0 = int(stride_f0) |
|
self.noise_convs.append( |
|
Conv1d( |
|
1, |
|
hp.gen.upsample_initial_channel // (2 ** (i + 1)), |
|
kernel_size=stride_f0 * 2, |
|
stride=stride_f0, |
|
padding=stride_f0 // 2, |
|
) |
|
) |
|
else: |
|
self.noise_convs.append( |
|
Conv1d(1, hp.gen.upsample_initial_channel // |
|
(2 ** (i + 1)), kernel_size=1) |
|
) |
|
|
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = hp.gen.upsample_initial_channel // (2 ** (i + 1)) |
|
for k, d in zip(hp.gen.resblock_kernel_sizes, hp.gen.resblock_dilation_sizes): |
|
self.resblocks.append(AMPBlock(hp, ch, k, d)) |
|
|
|
|
|
activation_post = SnakeBeta(ch, alpha_logscale=True) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) |
|
|
|
|
|
for i in range(len(self.ups)): |
|
self.ups[i].apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, spk, x, f0): |
|
|
|
x = self.adapter(x, spk) |
|
|
|
f0 = f0[:, None] |
|
f0 = self.f0_upsamp(f0).transpose(1, 2) |
|
har_source = self.m_source(f0) |
|
har_source = har_source.transpose(1, 2) |
|
x = self.conv_pre(x) |
|
|
|
for i in range(self.num_upsamples): |
|
|
|
for i_up in range(len(self.ups[i])): |
|
x = self.ups[i][i_up](x) |
|
|
|
x_source = self.noise_convs[i](har_source) |
|
x = x + x_source |
|
|
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
|
|
|
|
x = self.activation_post(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.ups: |
|
for l_i in l: |
|
remove_weight_norm(l_i) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|
|
def eval(self, inference=False): |
|
super(Generator, self).eval() |
|
|
|
if inference: |
|
self.remove_weight_norm() |
|
|
|
def pitch2source(self, f0): |
|
f0 = f0[:, None] |
|
f0 = self.f0_upsamp(f0).transpose(1, 2) |
|
har_source = self.m_source(f0) |
|
har_source = har_source.transpose(1, 2) |
|
return har_source |
|
|
|
def source2wav(self, audio): |
|
MAX_WAV_VALUE = 32768.0 |
|
audio = audio.squeeze() |
|
audio = MAX_WAV_VALUE * audio |
|
audio = audio.clamp(min=-MAX_WAV_VALUE, max=MAX_WAV_VALUE-1) |
|
audio = audio.short() |
|
return audio.cpu().detach().numpy() |
|
|
|
def inference(self, spk, x, har_source): |
|
|
|
x = self.adapter(x, spk) |
|
x = self.conv_pre(x) |
|
|
|
for i in range(self.num_upsamples): |
|
|
|
for i_up in range(len(self.ups[i])): |
|
x = self.ups[i][i_up](x) |
|
|
|
x_source = self.noise_convs[i](har_source) |
|
x = x + x_source |
|
|
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
|
|
|
|
x = self.activation_post(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
return x |
|
|