|
import os |
|
import numpy as np |
|
import random |
|
import torch |
|
import torch.utils.data |
|
|
|
|
|
from vits.utils import load_wav_to_torch |
|
|
|
|
|
def load_filepaths(filename, split="|"): |
|
with open(filename, encoding='utf-8') as f: |
|
filepaths = [line.strip().split(split) for line in f] |
|
return filepaths |
|
|
|
|
|
class TextAudioSpeakerSet(torch.utils.data.Dataset): |
|
def __init__(self, filename, hparams): |
|
self.items = load_filepaths(filename) |
|
self.max_wav_value = hparams.max_wav_value |
|
self.sampling_rate = hparams.sampling_rate |
|
self.segment_size = hparams.segment_size |
|
self.hop_length = hparams.hop_length |
|
self._filter() |
|
print(f'----------{len(self.items)}----------') |
|
|
|
def _filter(self): |
|
lengths = [] |
|
items_new = [] |
|
items_min = int(self.segment_size / self.hop_length * 4) |
|
items_max = int(self.segment_size / self.hop_length * 16) |
|
for wavpath, spec, pitch, vec, ppg, spk in self.items: |
|
if not os.path.isfile(wavpath): |
|
continue |
|
if not os.path.isfile(spec): |
|
continue |
|
if not os.path.isfile(pitch): |
|
continue |
|
if not os.path.isfile(vec): |
|
continue |
|
if not os.path.isfile(ppg): |
|
continue |
|
if not os.path.isfile(spk): |
|
continue |
|
temp = np.load(pitch) |
|
usel = int(temp.shape[0] - 1) |
|
if (usel < items_min): |
|
continue |
|
if (usel >= items_max): |
|
usel = items_max |
|
items_new.append([wavpath, spec, pitch, vec, ppg, spk, usel]) |
|
lengths.append(usel) |
|
self.items = items_new |
|
self.lengths = lengths |
|
|
|
def read_wav(self, filename): |
|
audio, sampling_rate = load_wav_to_torch(filename) |
|
assert sampling_rate == self.sampling_rate, f"error: this sample rate of {filename} is {sampling_rate}" |
|
audio_norm = audio / self.max_wav_value |
|
audio_norm = audio_norm.unsqueeze(0) |
|
return audio_norm |
|
|
|
def __getitem__(self, index): |
|
return self.my_getitem(index) |
|
|
|
def __len__(self): |
|
return len(self.items) |
|
|
|
def my_getitem(self, idx): |
|
item = self.items[idx] |
|
|
|
wav = item[0] |
|
spe = item[1] |
|
pit = item[2] |
|
vec = item[3] |
|
ppg = item[4] |
|
spk = item[5] |
|
use = item[6] |
|
|
|
wav = self.read_wav(wav) |
|
spe = torch.load(spe) |
|
|
|
pit = np.load(pit) |
|
vec = np.load(vec) |
|
vec = np.repeat(vec, 2, 0) |
|
ppg = np.load(ppg) |
|
ppg = np.repeat(ppg, 2, 0) |
|
spk = np.load(spk) |
|
|
|
pit = torch.FloatTensor(pit) |
|
vec = torch.FloatTensor(vec) |
|
ppg = torch.FloatTensor(ppg) |
|
spk = torch.FloatTensor(spk) |
|
|
|
len_pit = pit.size()[0] |
|
len_vec = vec.size()[0] - 2 |
|
len_ppg = ppg.size()[0] - 2 |
|
len_min = min(len_pit, len_vec) |
|
len_min = min(len_min, len_ppg) |
|
len_wav = len_min * self.hop_length |
|
|
|
pit = pit[:len_min] |
|
vec = vec[:len_min, :] |
|
ppg = ppg[:len_min, :] |
|
spe = spe[:, :len_min] |
|
wav = wav[:, :len_wav] |
|
if len_min > use: |
|
max_frame_start = ppg.size(0) - use - 1 |
|
frame_start = random.randint(0, max_frame_start) |
|
frame_end = frame_start + use |
|
|
|
pit = pit[frame_start:frame_end] |
|
vec = vec[frame_start:frame_end, :] |
|
ppg = ppg[frame_start:frame_end, :] |
|
spe = spe[:, frame_start:frame_end] |
|
|
|
wav_start = frame_start * self.hop_length |
|
wav_end = frame_end * self.hop_length |
|
wav = wav[:, wav_start:wav_end] |
|
|
|
|
|
|
|
|
|
|
|
return spe, wav, ppg, vec, pit, spk |
|
|
|
|
|
class TextAudioSpeakerCollate: |
|
"""Zero-pads model inputs and targets""" |
|
|
|
def __call__(self, batch): |
|
|
|
|
|
|
|
|
|
|
|
|
|
_, ids_sorted_decreasing = torch.sort( |
|
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True |
|
) |
|
|
|
max_spe_len = max([x[0].size(1) for x in batch]) |
|
max_wav_len = max([x[1].size(1) for x in batch]) |
|
spe_lengths = torch.LongTensor(len(batch)) |
|
wav_lengths = torch.LongTensor(len(batch)) |
|
spe_padded = torch.FloatTensor( |
|
len(batch), batch[0][0].size(0), max_spe_len) |
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) |
|
spe_padded.zero_() |
|
wav_padded.zero_() |
|
|
|
max_ppg_len = max([x[2].size(0) for x in batch]) |
|
ppg_lengths = torch.FloatTensor(len(batch)) |
|
ppg_padded = torch.FloatTensor( |
|
len(batch), max_ppg_len, batch[0][2].size(1)) |
|
vec_padded = torch.FloatTensor( |
|
len(batch), max_ppg_len, batch[0][3].size(1)) |
|
pit_padded = torch.FloatTensor(len(batch), max_ppg_len) |
|
ppg_padded.zero_() |
|
vec_padded.zero_() |
|
pit_padded.zero_() |
|
spk = torch.FloatTensor(len(batch), batch[0][5].size(0)) |
|
|
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
spe = row[0] |
|
spe_padded[i, :, : spe.size(1)] = spe |
|
spe_lengths[i] = spe.size(1) |
|
|
|
wav = row[1] |
|
wav_padded[i, :, : wav.size(1)] = wav |
|
wav_lengths[i] = wav.size(1) |
|
|
|
ppg = row[2] |
|
ppg_padded[i, : ppg.size(0), :] = ppg |
|
ppg_lengths[i] = ppg.size(0) |
|
|
|
vec = row[3] |
|
vec_padded[i, : vec.size(0), :] = vec |
|
|
|
pit = row[4] |
|
pit_padded[i, : pit.size(0)] = pit |
|
|
|
spk[i] = row[5] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return ( |
|
ppg_padded, |
|
ppg_lengths, |
|
vec_padded, |
|
pit_padded, |
|
spk, |
|
spe_padded, |
|
spe_lengths, |
|
wav_padded, |
|
wav_lengths, |
|
) |
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): |
|
""" |
|
Maintain similar input lengths in a batch. |
|
Length groups are specified by boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. |
|
It removes samples which are not included in the boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
batch_size, |
|
boundaries, |
|
num_replicas=None, |
|
rank=None, |
|
shuffle=True, |
|
): |
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) |
|
self.lengths = dataset.lengths |
|
self.batch_size = batch_size |
|
self.boundaries = boundaries |
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets() |
|
self.total_size = sum(self.num_samples_per_bucket) |
|
self.num_samples = self.total_size // self.num_replicas |
|
|
|
def _create_buckets(self): |
|
buckets = [[] for _ in range(len(self.boundaries) - 1)] |
|
for i in range(len(self.lengths)): |
|
length = self.lengths[i] |
|
idx_bucket = self._bisect(length) |
|
if idx_bucket != -1: |
|
buckets[idx_bucket].append(i) |
|
|
|
for i in range(len(buckets) - 1, 0, -1): |
|
if len(buckets[i]) == 0: |
|
buckets.pop(i) |
|
self.boundaries.pop(i + 1) |
|
|
|
num_samples_per_bucket = [] |
|
for i in range(len(buckets)): |
|
len_bucket = len(buckets[i]) |
|
total_batch_size = self.num_replicas * self.batch_size |
|
rem = ( |
|
total_batch_size - (len_bucket % total_batch_size) |
|
) % total_batch_size |
|
num_samples_per_bucket.append(len_bucket + rem) |
|
return buckets, num_samples_per_bucket |
|
|
|
def __iter__(self): |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
|
|
indices = [] |
|
if self.shuffle: |
|
for bucket in self.buckets: |
|
indices.append(torch.randperm( |
|
len(bucket), generator=g).tolist()) |
|
else: |
|
for bucket in self.buckets: |
|
indices.append(list(range(len(bucket)))) |
|
|
|
batches = [] |
|
for i in range(len(self.buckets)): |
|
bucket = self.buckets[i] |
|
len_bucket = len(bucket) |
|
if (len_bucket == 0): |
|
continue |
|
ids_bucket = indices[i] |
|
num_samples_bucket = self.num_samples_per_bucket[i] |
|
|
|
|
|
rem = num_samples_bucket - len_bucket |
|
ids_bucket = ( |
|
ids_bucket |
|
+ ids_bucket * (rem // len_bucket) |
|
+ ids_bucket[: (rem % len_bucket)] |
|
) |
|
|
|
|
|
ids_bucket = ids_bucket[self.rank:: self.num_replicas] |
|
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size): |
|
batch = [ |
|
bucket[idx] |
|
for idx in ids_bucket[ |
|
j * self.batch_size: (j + 1) * self.batch_size |
|
] |
|
] |
|
batches.append(batch) |
|
|
|
if self.shuffle: |
|
batch_ids = torch.randperm(len(batches), generator=g).tolist() |
|
batches = [batches[i] for i in batch_ids] |
|
self.batches = batches |
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples |
|
return iter(self.batches) |
|
|
|
def _bisect(self, x, lo=0, hi=None): |
|
if hi is None: |
|
hi = len(self.boundaries) - 1 |
|
|
|
if hi > lo: |
|
mid = (hi + lo) // 2 |
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: |
|
return mid |
|
elif x <= self.boundaries[mid]: |
|
return self._bisect(x, lo, mid) |
|
else: |
|
return self._bisect(x, mid + 1, hi) |
|
else: |
|
return -1 |
|
|
|
def __len__(self): |
|
return self.num_samples // self.batch_size |
|
|