rknl's picture
Update app.py
95325f5 verified
raw
history blame
4 kB
import os
import gradio as gr
from gradio import ChatMessage
import base64
from llama_index.core import StorageContext, load_index_from_storage
from dotenv import load_dotenv
from retrieve import get_latest_dir, get_latest_html_file
from graph_handler import query_graph_qa, plot_subgraph
from embed_handler import query_rag_qa
from evaluate import evaluate_llm, reasoning_graph, get_coupon
import base64
import time
load_dotenv()
KG_INDEX_PATH = get_latest_dir(os.getenv("GRAPH_DIR"))
KG_PLOT_PATH = get_latest_html_file(os.getenv("GRAPH_VIS"))
RAG_INDEX_PATH = get_latest_dir(os.getenv("EMBEDDING_DIR"))
# Load Graph-RAG index
graph_rag_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=KG_INDEX_PATH)
)
# Load RAG index
rag_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=RAG_INDEX_PATH)
)
def query_tqa(query, search_level):
"""
Query the Graph-RAG and RAG models for a given query.
Args:
query (str): The query to ask the RAGs.
search_level (int): The max search level to use for the Graph RAG.
Returns:
tuple: The response, reference, and reference text for the Graph-RAG and RAG models.
"""
if not query.strip():
raise gr.Error("Please enter a query before asking.")
grag_response, grag_reference, grag_reference_text = query_graph_qa(
graph_rag_index, query, search_level
)
# rag_response, rag_reference, rag_reference_text = query_rag_qa(
# rag_index, query, search_level
# )
print(str(grag_response.response))
return (
str(grag_response.response),
# grag_reference,
# grag_reference_text,
# rag_response,
# rag_reference,
# rag_reference_text,
)
def show_graph():
"""
Show the latest graph visualization in an iframe.
Returns:
str: The HTML content to display the graph visualization in an iframe.
"""
graph_vis_dir = os.getenv("GRAPH_VIS", "graph_vis")
try:
latest_graph = get_latest_html_file(graph_vis_dir)
if latest_graph:
with open(latest_graph, "r", encoding="utf-8") as f:
html_content = f.read()
encoded_html = base64.b64encode(html_content.encode()).decode()
iframe_html = f'<iframe src="data:text/html;base64,{encoded_html}" width="100%" height="1000px" frameborder="0"></iframe>'
return iframe_html
else:
return "No graph visualization found."
except Exception as e:
return f"Error: {str(e)}"
def reveal_coupon(query, grag_response):
"""
Get the coupon from the query and response.
Args:
query (str): Query asked to Graph-RAG.
grag_response (str): Response from the Graph-RAG model.
Returns:
str: Coupon with reasoning.
"""
if not query.strip() or not grag_response.strip():
raise gr.Error("Please ask a query and get a response before revealing the coupon.")
coupon = get_coupon(query, grag_response)
return coupon
with gr.Blocks() as demo:
gr.Markdown("# Comfy Virtual Assistant")
chatbot = gr.Chatbot(
label="Comfy Virtual Assistant",
type="messages",
scale=1,
# suggestions = [
# {"text": "How much iphone cost?"},
# {"text": "What phone options do i have ?"}
# ],
)
msg = gr.Textbox(label="Input Your Query")
clear = gr.ClearButton([msg, chatbot])
def respond(message, chat_history):
bot_message = query_tqa(message, 2)
# chat_history.append((message, bot_message))
chat_history.append(ChatMessage(role="user", content=message))
chat_history.append(ChatMessage(role="assistant", content=bot_message))
time.sleep(1)
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
demo.launch(auth=(os.getenv("ID"), os.getenv("PASS")), share=False)