Spaces:
Sleeping
Sleeping
File size: 15,403 Bytes
5fc7138 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import plotly
import plotly.graph_objs as go
from plotly.subplots import make_subplots
from sklearn.preprocessing import StandardScaler
from causalml.inference.meta import BaseTClassifier
from sklearn.ensemble import RandomForestClassifier
from data_generator import generate_synthetic_data
from rct_simulator import run_rct_simulation
from rct_analyzer import analyze_rct_results
# Global variables to store generated data and RCT results
generated_data = None
rct_results = None
def perform_eda(discount_level):
global rct_results, generated_data
if rct_results is None or generated_data is None:
return "Please generate customer data and run RCT simulation first.", None, None, None, None
transactions_df, variant_assignments_df = rct_results
# Merge data
merged_df = pd.merge(generated_data, variant_assignments_df, on='customer_id', how='inner')
merged_df = pd.merge(merged_df, transactions_df, on=['customer_id', 'variant'], how='left')
merged_df['purchase'] = merged_df['purchase'].fillna(0)
merged_df['profit'] = merged_df['profit'].fillna(0)
# Filter for control and selected discount level
filtered_df = merged_df[merged_df['variant'].isin(['Control', discount_level])]
# Analyze newsletter_subscription
newsletter_results = analyze_feature(filtered_df, 'newsletter_subscription')
# Analyze preferred_payment_method
payment_results = analyze_feature(filtered_df, 'preferred_payment_method')
# Create plots
newsletter_fig = create_bar_plot(newsletter_results, 'newsletter_subscription', discount_level)
payment_fig = create_bar_plot(payment_results, 'preferred_payment_method', discount_level)
return (f"EDA completed for {discount_level}",
newsletter_results, payment_results, newsletter_fig, payment_fig)
def analyze_feature(df, feature):
control_df = df[df['variant'] == 'Control']
treatment_df = df[df['variant'] != 'Control']
control_stats = control_df.groupby(feature).agg({
'purchase': 'sum',
'profit': 'sum'
}).reset_index()
treatment_stats = treatment_df.groupby(feature).agg({
'purchase': 'sum',
'profit': 'sum'
}).reset_index()
results = pd.merge(control_stats, treatment_stats, on=feature, suffixes=('_control', '_treatment'))
results['incremental_purchases'] = results['purchase_treatment'] - results['purchase_control']
results['incremental_profit'] = results['profit_treatment'] - results['profit_control']
return results
def create_bar_plot(data, feature, discount_level):
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
data[feature] = data[feature].astype(str) # Ensure the feature is treated as a string
ax1.bar(data[feature], data['incremental_purchases'])
ax1.set_title(f'Incremental Purchases by {feature}\n({discount_level})', fontsize=14)
ax1.set_xlabel(feature)
ax1.set_ylabel('Incremental Purchases')
ax1.tick_params(axis='x', rotation=45)
ax2.bar(data[feature], data['incremental_profit'])
ax2.set_title(f'Incremental Profit by {feature}\n({discount_level})', fontsize=14)
ax2.set_xlabel(feature)
ax2.set_ylabel('Incremental Profit')
ax2.tick_params(axis='x', rotation=45)
plt.tight_layout()
return fig
def generate_and_display_data(num_customers):
global generated_data
generated_data = generate_synthetic_data(num_customers=num_customers)
df_basic_info = generated_data[['customer_id', 'name', 'email', 'age', 'gender', 'region', 'city',
'registration_date', 'phone_number', 'preferred_language',
'newsletter_subscription', 'preferred_payment_method']]
df_extra_info = generated_data[['customer_id', 'loyalty_level', 'main_browsing_device',
'product_categories_of_interest', 'average_order_value',
'total_orders', 'last_order_date']]
sample_basic = df_basic_info.sample(n=min(10, len(df_basic_info)))
sample_extra = df_extra_info.sample(n=min(10, len(df_extra_info)))
return (sample_basic, sample_extra,
f"Generated {num_customers} records. Displaying samples of 10 rows for each dataset.")
def run_and_display_rct(experiment_duration):
global generated_data, rct_results
if generated_data is None:
return None, None, "Please generate customer data first."
transactions_df, variant_assignments_df = run_rct_simulation(generated_data, experiment_duration)
rct_results = (transactions_df, variant_assignments_df) # Store both DataFrames as a tuple
sample_assignments = variant_assignments_df.sample(n=min(10, len(variant_assignments_df)))
sample_transactions = transactions_df.sample(n=min(10, len(transactions_df)))
return (sample_assignments, sample_transactions,
f"Ran RCT simulation for {experiment_duration} days. Displaying samples of 10 rows for each dataset.")
def analyze_and_display_results():
global rct_results
if rct_results is None:
return None, None, None, "Please run the RCT simulation first."
transactions_df, variant_assignments_df = rct_results
overall_df, variant_df, fig = analyze_rct_results(transactions_df, variant_assignments_df)
return overall_df, variant_df, fig, "Analysis complete. Displaying results and visualizations."
def build_uplift_model(data, features, treatment, control):
# Prepare the data
treatment_data = data[data['variant'] == treatment]
control_data = data[data['variant'] == control]
combined_data = pd.concat([treatment_data, control_data])
# Create dummy variables for categorical features
categorical_features = [f for f in features if data[f].dtype == 'object']
X = pd.get_dummies(data[features], columns=categorical_features)
# Standardize numerical features
numerical_features = [f for f in features if data[f].dtype in ['int64', 'float64']]
scaler = StandardScaler()
X[numerical_features] = scaler.fit_transform(X[numerical_features])
# Prepare y and treatment for the combined data
y = combined_data['purchase']
t = (combined_data['variant'] == treatment).astype(int)
# Create and fit the RandomForestClassifier directly
rf_model = RandomForestClassifier(n_estimators=50, max_depth=4)
rf_model.fit(X.loc[combined_data.index], y)
# Get feature importances from the RandomForestClassifier
feature_importances = rf_model.feature_importances_
# Create a dataframe with feature names and their importances
feature_importance_df = pd.DataFrame({
'feature': X.columns,
'importance': feature_importances
}).sort_values('importance', ascending=False)
# Create and fit the BaseTClassifier model
model = BaseTClassifier(RandomForestClassifier(n_estimators=50, max_depth=4))
model.fit(X=X.loc[combined_data.index].values, treatment=t, y=y)
# Predict for all data
uplift_scores = model.predict(X.values)
# Handle 2D output if necessary
if uplift_scores.ndim == 2:
if uplift_scores.shape[1] == 2:
uplift_scores = uplift_scores[:, 1] - uplift_scores[:, 0]
elif uplift_scores.shape[1] == 1:
uplift_scores = uplift_scores.flatten()
return uplift_scores, feature_importance_df
def build_model_and_display(selected_features, treatment):
global rct_results, generated_data
if rct_results is None or generated_data is None:
return "Please generate customer data and run RCT simulation first.", None, None
transactions_df, variant_assignments_df = rct_results
# Prepare the data
df_with_variant = pd.merge(generated_data, variant_assignments_df, on='customer_id', how='inner')
transactions_df['purchase'] = 1
final_df = pd.merge(df_with_variant, transactions_df, on=['customer_id', 'variant'], how='left')
columns_to_fill = ['purchase', 'price', 'discounted_price', 'cost', 'profit']
final_df[columns_to_fill] = final_df[columns_to_fill].fillna(0)
# Build the model
uplift_scores, feature_importance_df = build_uplift_model(final_df, selected_features, treatment, 'Control')
# Calculate statistics
stats = pd.DataFrame({
'Metric': ['Mean', 'Std', 'Min', 'Max'],
'Value': [
np.mean(uplift_scores),
np.std(uplift_scores),
np.min(uplift_scores),
np.max(uplift_scores)
]
})
# Create feature importance plot
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(x='importance', y='feature', data=feature_importance_df.head(10), ax=ax)
ax.set_title(f'Top 10 Feature Importance for {treatment} vs Control')
ax.set_xlabel('Importance')
ax.set_ylabel('Feature')
plt.tight_layout()
info = f"Uplift model built using {len(selected_features)} features.\n"
info += f"Treatment: {treatment} vs Control\n"
info += f"Number of samples: {len(uplift_scores)}"
return info, stats, fig
with gr.Blocks() as demo:
gr.Markdown("# Causal AI - Synthetic Customer Data Generator and RCT Simulator")
with gr.Tab("Generate Customer Data"):
gr.Markdown("# Generate Synthetic Customers data")
gr.Markdown("In this section we generate typical data of customers that are registered to our store.")
gr.Markdown("First we generate some basic attributes that are defined when the customer first registers, such as Name, City or Preferred Language.")
gr.Markdown("Then we add some extra information that is usually the result of the customer past behavior, such as Loyalty Level, Past Purchases or Categories of interest.")
gr.Markdown("## Select the number of customers that you want to Generate")
num_customers_input = gr.Slider(minimum=10000, maximum=500000, value=50000, step=1000, label="Number of Customer Records")
generate_btn = gr.Button("Generate Customer Data")
gr.Markdown("## Basic Customer Info Sample")
basic_info_output = gr.DataFrame()
gr.Markdown("## Extra Customer Info Sample")
extra_info_output = gr.DataFrame()
generate_info = gr.Textbox(label="Generation Info")
generate_btn.click(fn=generate_and_display_data,
inputs=num_customers_input,
outputs=[basic_info_output, extra_info_output, generate_info])
with gr.Tab("Run RCT Simulation"):
gr.Markdown("# Run a Randomized Control Experiment for data collection and analysis")
gr.Markdown("In this section we simulate running an Experiment where we offer customers different levels of discounts in the Electronics department.")
gr.Markdown("We randomly split the customers in 4 groups: Control, 5% discount, 10% discount and 15% discount")
gr.Markdown("During the experiment runtime we record all the purchases made by the customers. We can decide how long to run the experiment for, where longer periods lead to less noise and more significance in the results.")
experiment_duration_input = gr.Slider(minimum=10, maximum=60, value=30, step=1, label="Experiment Duration (days)")
rct_btn = gr.Button("Run RCT Simulation")
gr.Markdown("## Customer assigment to experiment group:")
assignments_output = gr.DataFrame()
gr.Markdown("## Purchases made during experiment runtime:")
transactions_output = gr.DataFrame()
rct_info = gr.Textbox(label="RCT Simulation Info")
rct_btn.click(fn=run_and_display_rct,
inputs=experiment_duration_input,
outputs=[assignments_output, transactions_output, rct_info])
with gr.Tab("Analyze RCT Results"):
gr.Markdown("# Experiment Analysis")
gr.Markdown("In this section we analyze the experiment results. We measure, per each discount value (5%, 10%, 15%) what is the incremental number of Purchases and the incremental Profit compared to the Control group.")
analyze_btn = gr.Button("Analyze RCT Results")
gr.Markdown("## Overall metrics")
overall_metrics_output = gr.DataFrame()
gr.Markdown("## Metrics by Variant")
variant_metrics_output = gr.DataFrame()
gr.Markdown("## Metrics per Variant visualization")
gr.Markdown("## To-Do: Add confidence intervals")
plot_output = gr.Plot()
analysis_info = gr.Textbox(label="Analysis Info")
analyze_btn.click(fn=analyze_and_display_results,
inputs=[],
outputs=[overall_metrics_output, variant_metrics_output, plot_output, analysis_info])
with gr.Tab("Exploratory Data Analysis"):
gr.Markdown("# Exploratory Data Analysis")
gr.Markdown("In this section, we explore the impact of discounts on different customer segments.")
discount_dropdown = gr.Dropdown(
choices=['5% discount', '10% discount', '15% discount'],
label="Select discount level to analyze",
value='10% discount'
)
eda_btn = gr.Button("Perform EDA")
eda_info = gr.Textbox(label="EDA Information")
gr.Markdown("## Newsletter Subscription Analysis")
newsletter_results = gr.DataFrame(label="Newsletter Subscription Results")
newsletter_plot = gr.Plot(label="Newsletter Subscription Plot")
gr.Markdown("## Preferred Payment Method Analysis")
payment_results = gr.DataFrame(label="Preferred Payment Method Results")
payment_plot = gr.Plot(label="Preferred Payment Method Plot")
eda_btn.click(
fn=perform_eda,
inputs=[discount_dropdown],
outputs=[eda_info, newsletter_results, payment_results, newsletter_plot, payment_plot]
)
with gr.Tab("Build Uplift Model"):
gr.Markdown("## Build Uplift Model")
# Feature selection
feature_checklist = gr.CheckboxGroup(
choices=['age', 'gender', 'region', 'preferred_language', 'newsletter_subscription',
'preferred_payment_method', 'loyalty_level', 'main_browsing_device',
'average_order_value', 'total_orders'],
label="Select features for the model",
value=['age', 'gender', 'loyalty_level', 'average_order_value', 'total_orders']
)
# Dropdown for selecting treatment
treatment_dropdown = gr.Dropdown(
choices=['5% discount', '10% discount', '15% discount'],
label="Select treatment",
value='10% discount'
)
build_model_btn = gr.Button("Build Uplift Model")
model_info = gr.Textbox(label="Model Information")
uplift_stats = gr.Dataframe(label="Uplift Score Statistics")
feature_importance_plot = gr.Plot(label="Feature Importance")
build_model_btn.click(
fn=build_model_and_display,
inputs=[feature_checklist, treatment_dropdown],
outputs=[model_info, uplift_stats, feature_importance_plot]
)
demo.launch() |