comfyCausalAI / app.py
rknl's picture
fixes plot
cae1c9c verified
raw
history blame
33.4 kB
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import plotly
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import plotly.subplots as sp
from sklearn.preprocessing import StandardScaler
from causalml.inference.meta import BaseTClassifier
from sklearn.ensemble import RandomForestClassifier
from data_generator import generate_synthetic_data
from rct_analyzer import analyze_rct_results
from sklearn.model_selection import train_test_split
from rct_simulator import run_rct_simulation, electronics_products, calculate_purchase_probability
# Global variables to store generated data and RCT results
generated_data = None
rct_results = None
uplift_models = {}
last_used_features = None
def perform_eda(discount_level):
"""
Perform Exploratory Data Analysis on the RCT results for a specific discount level.
This function analyzes the impact of newsletter subscription and preferred payment method
on purchase behavior and profitability for the selected discount level.
Args:
discount_level (str): The discount level to analyze ('5% discount', '10% discount', or '15% discount')
Returns:
tuple: Contains EDA results, including newsletter and payment method analysis dataframes and plots
"""
global rct_results, generated_data
if rct_results is None or generated_data is None:
return "Please generate customer data and run RCT simulation first.", None, None, None, None
transactions_df, variant_assignments_df = rct_results
# Merge data
merged_df = pd.merge(generated_data, variant_assignments_df, on='customer_id', how='inner')
merged_df = pd.merge(merged_df, transactions_df, on=['customer_id', 'variant'], how='left')
merged_df['purchase'] = merged_df['purchase'].fillna(0)
merged_df['profit'] = merged_df['profit'].fillna(0)
# Filter for control and selected discount level
filtered_df = merged_df[merged_df['variant'].isin(['Control', discount_level])]
# Analyze newsletter_subscription
newsletter_results = analyze_feature(filtered_df, 'newsletter_subscription')
# Analyze preferred_payment_method
payment_results = analyze_feature(filtered_df, 'preferred_payment_method')
# Create plots
newsletter_fig = create_bar_plot(newsletter_results, 'newsletter_subscription', discount_level)
payment_fig = create_bar_plot(payment_results, 'preferred_payment_method', discount_level)
return (f"EDA completed for {discount_level}",
newsletter_results, payment_results, newsletter_fig, payment_fig)
def analyze_feature(df, feature):
"""
Analyze the impact of a specific feature on purchase behavior and profitability.
This function calculates incremental purchases and profits for different values of the feature,
comparing the treatment group (discount) to the control group.
Args:
df (pandas.DataFrame): The dataset containing customer and transaction data
feature (str): The feature to analyze (e.g., 'newsletter_subscription' or 'preferred_payment_method')
Returns:
pandas.DataFrame: Results of the feature analysis, including incremental purchases and profits
"""
control_df = df[df['variant'] == 'Control']
treatment_df = df[df['variant'] != 'Control']
control_stats = control_df.groupby(feature).agg({
'purchase': 'sum',
'profit': 'sum'
}).reset_index()
treatment_stats = treatment_df.groupby(feature).agg({
'purchase': 'sum',
'profit': 'sum'
}).reset_index()
results = pd.merge(control_stats, treatment_stats, on=feature, suffixes=('_control', '_treatment'))
results['incremental_purchases'] = results['purchase_treatment'] - results['purchase_control']
results['incremental_profit'] = results['profit_treatment'] - results['profit_control']
return results
def create_bar_plot(data, feature, discount_level):
"""
Create a bar plot to visualize the impact of a feature on incremental purchases and profits.
Args:
data (pandas.DataFrame): The data to plot
feature (str): The feature being analyzed
discount_level (str): The discount level being analyzed
Returns:
matplotlib.figure.Figure: The created bar plot
"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
data[feature] = data[feature].astype(str) # Ensure the feature is treated as a string
ax1.bar(data[feature], data['incremental_purchases'])
ax1.set_title(f'Incremental Purchases by {feature}\n({discount_level})', fontsize=14)
ax1.set_xlabel(feature)
ax1.set_ylabel('Incremental Purchases')
ax1.tick_params(axis='x', rotation=45)
ax2.bar(data[feature], data['incremental_profit'])
ax2.set_title(f'Incremental Profit by {feature}\n({discount_level})', fontsize=14)
ax2.set_xlabel(feature)
ax2.set_ylabel('Incremental Profit')
ax2.tick_params(axis='x', rotation=45)
plt.tight_layout()
return fig
def generate_and_display_data(num_customers):
"""
Generate synthetic customer data and display samples of basic and extra customer information.
Args:
num_customers (int): The number of customer records to generate
Returns:
tuple: Contains sample dataframes of basic and extra customer information, and generation info
"""
global generated_data
generated_data = generate_synthetic_data(num_customers=num_customers)
df_basic_info = generated_data[['customer_id', 'name', 'email', 'age', 'gender', 'region', 'city',
'registration_date', 'phone_number', 'preferred_language',
'newsletter_subscription', 'preferred_payment_method']]
df_extra_info = generated_data[['customer_id', 'loyalty_level', 'main_browsing_device',
'product_categories_of_interest', 'average_order_value',
'total_orders', 'last_order_date']]
sample_basic = df_basic_info.sample(n=min(10, len(df_basic_info)))
sample_extra = df_extra_info.sample(n=min(10, len(df_extra_info)))
return (sample_basic, sample_extra,
f"Generated {num_customers} records. Displaying samples of 10 rows for each dataset.")
def run_and_display_rct(experiment_duration):
"""
Run a Randomized Control Trial (RCT) simulation and display sample results.
Args:
experiment_duration (int): The duration of the experiment in days
Returns:
tuple: Contains sample dataframes of variant assignments and transactions, and simulation info
"""
global generated_data, rct_results
if generated_data is None:
return None, None, "Please generate customer data first."
transactions_df, variant_assignments_df = run_rct_simulation(generated_data, experiment_duration)
rct_results = (transactions_df, variant_assignments_df) # Store both DataFrames as a tuple
sample_assignments = variant_assignments_df.sample(n=min(10, len(variant_assignments_df)))
sample_transactions = transactions_df.sample(n=min(10, len(transactions_df)))
return (sample_assignments, sample_transactions,
f"Ran RCT simulation for {experiment_duration} days. Displaying samples of 10 rows for each dataset.")
def analyze_and_display_results():
"""
Analyze the results of the RCT simulation and display overall metrics, variant metrics, and visualizations.
Returns:
tuple: Contains overall metrics dataframe, variant metrics dataframe, visualization, and analysis info
"""
global rct_results
if rct_results is None:
return None, None, None, "Please run the RCT simulation first."
transactions_df, variant_assignments_df = rct_results
overall_df, variant_df, fig = analyze_rct_results(transactions_df, variant_assignments_df)
return overall_df, variant_df, fig, "Analysis complete. Displaying results and visualizations."
def build_uplift_model(data, features, treatment, control):
"""
Build an uplift model to predict the impact of a treatment on customer behavior.
This function prepares the data, creates dummy variables for categorical features,
standardizes numerical features, and fits a RandomForestClassifier and a BaseTClassifier model.
Args:
data (pandas.DataFrame): The dataset containing customer and transaction data
features (list): List of features to use in the model
treatment (str): The treatment variant (e.g., '10% discount')
control (str): The control variant
Returns:
tuple: Contains the fitted model, uplift scores, feature importance dataframe, and prepared features
"""
# Prepare the data
treatment_data = data[data['variant'] == treatment]
control_data = data[data['variant'] == control]
combined_data = pd.concat([treatment_data, control_data])
# Create dummy variables for categorical features
categorical_features = [f for f in features if data[f].dtype == 'object']
X = pd.get_dummies(data[features], columns=categorical_features)
# Standardize numerical features
numerical_features = [f for f in features if data[f].dtype in ['int64', 'float64']]
scaler = StandardScaler()
X[numerical_features] = scaler.fit_transform(X[numerical_features])
# Prepare y and treatment for the combined data
y = combined_data['purchase']
t = (combined_data['variant'] == treatment).astype(int)
# Create and fit the RandomForestClassifier directly
rf_model = RandomForestClassifier(n_estimators=50, max_depth=4)
rf_model.fit(X.loc[combined_data.index], y)
# Get feature importances from the RandomForestClassifier
feature_importances = rf_model.feature_importances_
# Create a dataframe with feature names and their importances
feature_importance_df = pd.DataFrame({
'feature': X.columns,
'importance': feature_importances
}).sort_values('importance', ascending=False)
# Create and fit the BaseTClassifier model
model = BaseTClassifier(RandomForestClassifier(n_estimators=50, max_depth=4))
model.fit(X=X.loc[combined_data.index].values, treatment=t, y=y)
# Predict for all data
uplift_scores = model.predict(X.values)
# Handle 2D output if necessary
if uplift_scores.ndim == 2:
if uplift_scores.shape[1] == 2:
uplift_scores = uplift_scores[:, 1] - uplift_scores[:, 0]
elif uplift_scores.shape[1] == 1:
uplift_scores = uplift_scores.flatten()
return model, uplift_scores, feature_importance_df, X
def calculate_incremental_metrics(data, uplift_scores, treatment, threshold):
"""
Calculate incremental purchases and profits based on uplift scores and a threshold.
Args:
data (pandas.DataFrame): The dataset containing customer and transaction data
uplift_scores (numpy.array): The uplift scores for each customer
treatment (str): The treatment variant (e.g., '10% discount')
threshold (float): The uplift score threshold for targeting
Returns:
tuple: Contains incremental purchases and incremental profits
"""
treated = data[data['variant'] == treatment]
control = data[data['variant'] == 'Control']
targeted = data[uplift_scores > threshold]
targeted_treated = targeted[targeted['variant'] == treatment]
targeted_control = targeted[targeted['variant'] == 'Control']
inc_purchases = (targeted_treated['purchase'].mean() - targeted_control['purchase'].mean()) * len(targeted)
inc_profit = (targeted_treated['profit'].mean() - targeted_control['profit'].mean()) * len(targeted)
return inc_purchases, inc_profit
def build_models_and_display(selected_features):
"""
Build uplift models for all discount levels and display results.
This function builds uplift models for 5%, 10%, and 15% discounts, calculates feature importance,
and creates visualizations to compare model performance.
Args:
selected_features (list): List of features to use in the models
Returns:
tuple: Contains model information, feature importance plot, and uplift plot
"""
global rct_results, generated_data, uplift_models, last_used_features
if rct_results is None or generated_data is None:
return "Please generate customer data and run RCT simulation first.", None, None
transactions_df, variant_assignments_df = rct_results
# Prepare the data
df_with_variant = pd.merge(generated_data, variant_assignments_df, on='customer_id', how='inner')
transactions_df['purchase'] = 1
final_df = pd.merge(df_with_variant, transactions_df, on=['customer_id', 'variant'], how='left')
final_df[['purchase', 'price', 'discounted_price', 'cost', 'profit']] = final_df[['purchase', 'price', 'discounted_price', 'cost', 'profit']].fillna(0)
# Perform train/test split at customer ID level
train_ids, test_ids = train_test_split(final_df['customer_id'].unique(), test_size=0.5, random_state=42)
train_df = final_df[final_df['customer_id'].isin(train_ids)]
test_df = final_df[final_df['customer_id'].isin(test_ids)]
treatments = ['5% discount', '10% discount', '15% discount']
colors = ['blue', 'green', 'purple']
all_feature_importance = []
uplift_models = {} # Store models for each treatment
# Create Matplotlib figure for uplift plots
fig_uplift, axs = plt.subplots(2, 1, figsize=(10, 12))
for treatment, color in zip(treatments, colors):
model, train_uplift_scores, feature_importance_df, X_train = build_uplift_model(train_df, selected_features, treatment, 'Control')
uplift_models[treatment] = model # Store the model
feature_importance_df['treatment'] = treatment
all_feature_importance.append(feature_importance_df)
X_test = pd.get_dummies(test_df[selected_features], columns=[f for f in selected_features if test_df[f].dtype == 'object'])
X_test = X_test.reindex(columns=X_train.columns, fill_value=0)
scaler = StandardScaler()
X_test.loc[:, X_test.dtypes != 'uint8'] = scaler.fit_transform(X_test.loc[:, X_test.dtypes != 'uint8'])
test_uplift_scores = model.predict(X_test.values)
if test_uplift_scores.ndim == 2:
test_uplift_scores = test_uplift_scores[:, 1] - test_uplift_scores[:, 0] if test_uplift_scores.shape[1] == 2 else test_uplift_scores.flatten()
for i, (dataset, uplift_scores) in enumerate([(train_df, train_uplift_scores), (test_df, test_uplift_scores)]):
thresholds = np.linspace(np.min(uplift_scores), np.max(uplift_scores), 100)
inc_purchases, inc_profits = zip(*[calculate_incremental_metrics(dataset, uplift_scores, treatment, threshold) for threshold in thresholds])
axs[i].plot(inc_purchases, inc_profits, label=f'{treatment} Model', color=color)
axs[i].plot([0, inc_purchases[0]], [0, inc_profits[0]], label=f'{treatment} Random', color=color, linestyle='--')
# Customize uplift plots
for i, title in enumerate(["Train Set Performance", "Test Set Performance"]):
axs[i].set_title(title)
axs[i].set_xlabel("Incremental Purchases")
axs[i].set_ylabel("Incremental Profit")
axs[i].legend()
axs[i].grid(True)
plt.tight_layout()
# Create feature importance plot
fig_importance, ax = plt.subplots(figsize=(12, 8))
combined_feature_importance = pd.concat(all_feature_importance)
treatment_order = ['5% discount', '10% discount', '15% discount']
feature_order = combined_feature_importance[combined_feature_importance['treatment'] == '5% discount'].sort_values('importance', ascending=False)['feature'].unique()
sns.barplot(x='importance', y='feature', hue='treatment', data=combined_feature_importance,
hue_order=treatment_order, order=feature_order, ax=ax)
ax.set_title('Feature Importance for All Treatments vs Control (Train Set)')
ax.set_xlabel('Importance')
ax.set_ylabel('Feature')
plt.tight_layout()
last_used_features = selected_features # Store the last used features
info = f"Uplift models built using {len(selected_features)} features.\n"
info += f"Treatments: 5%, 10%, and 15% discounts vs Control\n"
info += f"Number of samples: Train set - {len(train_df)}, Test set - {len(test_df)}\n"
info += f"Displaying results for both Train and Test sets"
return info, fig_importance, fig_uplift
def run_targeting_policy(discount_level, target_percentage, experiment_duration):
"""
Run a targeting policy experiment based on the uplift model predictions.
This function applies the uplift model to predict customer responses to a discount,
targets a specified percentage of customers, and simulates the experiment results.
Args:
discount_level (str): The discount level to apply (e.g., '10% discount')
target_percentage (float): The percentage of customers to target with the discount
experiment_duration (int): The duration of the experiment in days
Returns:
tuple: Contains the experiment results DataFrame, transactions DataFrame, and experiment info
"""
global generated_data, uplift_models, last_used_features
if generated_data is None or not uplift_models:
return None, "Please generate customer data and build uplift models first."
# Prepare the data
df = generated_data.copy()
# Use the uplift model to make predictions
model = uplift_models.get(discount_level)
if model is None:
return None, f"No uplift model found for {discount_level}. Please build the model first."
# Prepare features for prediction
X = pd.get_dummies(df[last_used_features], columns=[f for f in last_used_features if df[f].dtype == 'object'])
# Standardize numerical features
numerical_features = [f for f in last_used_features if df[f].dtype in ['int64', 'float64']]
scaler = StandardScaler()
X[numerical_features] = scaler.fit_transform(X[numerical_features])
# Get uplift scores
uplift_scores = model.predict(X.values)
if uplift_scores.ndim == 2:
uplift_scores = uplift_scores[:, 1] - uplift_scores[:, 0] if uplift_scores.shape[1] == 2 else uplift_scores.flatten()
# Calculate the threshold based on the target percentage
model_threshold = get_threshold_for_percentage(uplift_scores, target_percentage)
# Assign variants
all_variants = ['Control', '5% discount', '10% discount', '15% discount', 'Targeted']
variant_probabilities = [0.2] * 5 # Equal probability for all variants
df['experiment_variant'] = np.random.choice(all_variants, size=len(df), p=variant_probabilities)
# For customers in the Targeted group, determine if they get a discount
df['gets_targeted_discount'] = (df['experiment_variant'] == 'Targeted') & (uplift_scores > model_threshold)
# Run simulation
transactions_df = run_targeted_simulation(df, experiment_duration, discount_level)
return df, transactions_df, f"Ran targeting policy simulation for {experiment_duration} days with {discount_level} and targeting {target_percentage}% of the audience."
def run_targeted_simulation(df, experiment_duration, discount_level):
"""
Run a targeted simulation based on the assigned variants and uplift scores.
This function simulates customer purchases during the experiment period,
taking into account the assigned variants and whether customers receive targeted discounts.
Args:
df (pandas.DataFrame): The customer data with assigned variants and targeting information
experiment_duration (int): The duration of the experiment in days
discount_level (str): The discount level being applied (e.g., '10% discount')
Returns:
pandas.DataFrame: A DataFrame containing the simulated transactions
"""
transactions = []
for _, customer in df.iterrows():
variant = customer['experiment_variant']
if variant == 'Targeted':
discount = float(discount_level.split('%')[0]) / 100 if customer['gets_targeted_discount'] else 0
elif '%' in variant:
discount = float(variant.split('%')[0]) / 100
else:
discount = 0
# Simulate purchases
num_purchases = np.random.poisson(experiment_duration / 10)
for _ in range(num_purchases):
product = np.random.choice(electronics_products)
if np.random.random() < calculate_purchase_probability(customer, discount):
price = product['price']
discounted_price = price * (1 - discount)
cost = product['cost']
profit = discounted_price - cost
transactions.append({
'customer_id': customer['customer_id'],
'variant': variant,
'product': product['name'],
'price': price,
'discounted_price': discounted_price,
'cost': cost,
'profit': profit
})
return pd.DataFrame(transactions)
def analyze_targeting_results(assignment_df, transactions_df):
"""
Analyze the results of the targeting policy experiment.
This function calculates various metrics for each variant, including conversion rates,
average revenue and profit per customer, and incremental purchases and profits.
Args:
assignment_df (pandas.DataFrame): The DataFrame containing variant assignments
transactions_df (pandas.DataFrame): The DataFrame containing transaction data
Returns:
tuple: Contains a DataFrame with variant metrics and a plotly Figure object
"""
# Calculate metrics for assigned customers
assigned_customers = assignment_df.groupby('experiment_variant')['customer_id'].nunique().reset_index()
assigned_customers.columns = ['variant', 'assigned_customers']
# Calculate metrics for purchases
purchase_metrics = transactions_df.groupby('variant').agg({
'customer_id': 'nunique',
'discounted_price': 'sum',
'profit': 'sum'
}).reset_index()
purchase_metrics.columns = ['variant', 'purchasing_customers', 'revenue', 'profit']
# Merge assigned customers with purchase metrics
variant_metrics = pd.merge(assigned_customers, purchase_metrics, on='variant', how='left')
variant_metrics = variant_metrics.fillna(0) # Fill NaN values with 0 for variants with no purchases
# Calculate additional metrics
variant_metrics['conversion_rate'] = variant_metrics['purchasing_customers'] / variant_metrics['assigned_customers']
variant_metrics['avg_revenue_per_customer'] = variant_metrics['revenue'] / variant_metrics['assigned_customers']
variant_metrics['avg_profit_per_customer'] = variant_metrics['profit'] / variant_metrics['assigned_customers']
# Calculate incremental metrics compared to control
control_metrics = variant_metrics[variant_metrics['variant'] == 'Control'].iloc[0]
variant_metrics['incremental_purchases'] = variant_metrics['purchasing_customers'] - control_metrics['purchasing_customers']
variant_metrics['incremental_profit'] = variant_metrics['profit'] - control_metrics['profit']
# Create visualization using Matplotlib
fig, ax = plt.subplots(figsize=(10, 6))
colors = {'Control': 'blue', '5% discount': 'green', '10% discount': 'orange',
'15% discount': 'red', 'Targeted': 'purple'}
for variant in variant_metrics['variant']:
variant_data = variant_metrics[variant_metrics['variant'] == variant]
ax.scatter(variant_data['incremental_purchases'], variant_data['incremental_profit'],
label=variant, color=colors.get(variant, 'gray'))
ax.annotate(variant, (variant_data['incremental_purchases'].values[0],
variant_data['incremental_profit'].values[0]),
xytext=(5, 5), textcoords='offset points')
ax.set_title('Incremental Profit vs Incremental Purchases by Variant')
ax.set_xlabel('Incremental Purchases')
ax.set_ylabel('Incremental Profit')
ax.legend(loc='lower left')
ax.grid(True)
plt.tight_layout()
return variant_metrics, fig
def get_threshold_for_percentage(uplift_scores, percentage):
"""
Calculate the threshold that targets the specified percentage of the audience.
Args:
uplift_scores (numpy.array): Array of uplift scores for all customers
percentage (float): The desired percentage of customers to target
Returns:
float: The uplift score threshold that targets the specified percentage of customers
"""
if percentage == 100:
return np.min(uplift_scores) - 1e-10 # Return a value slightly lower than the minimum
elif percentage == 0:
return np.max(uplift_scores) + 1e-10 # Return a value slightly higher than the maximum
else:
sorted_scores = np.sort(uplift_scores)[::-1] # Sort in descending order
index = int(len(sorted_scores) * (percentage / 100)) - 1 # Subtract 1 to avoid index out of bounds
return sorted_scores[index]
with gr.Blocks() as demo:
gr.Markdown("# Causal AI - Synthetic Customer Data Generator and RCT Simulator")
with gr.Tab("Generate Customer Data"):
gr.Markdown("# Generate Synthetic Customers data")
gr.Markdown("In this section we generate typical data of customers that are registered to our store.")
gr.Markdown("First we generate some basic attributes that are defined when the customer first registers, such as Name, City or Preferred Language.")
gr.Markdown("Then we add some extra information that is usually the result of the customer past behavior, such as Loyalty Level, Past Purchases or Categories of interest.")
gr.Markdown("## Select the number of customers that you want to Generate")
num_customers_input = gr.Slider(minimum=10000, maximum=500000, value=200000, step=1000, label="Number of Customer Records")
generate_btn = gr.Button("Generate Customer Data")
gr.Markdown("## Basic Customer Info Sample")
basic_info_output = gr.DataFrame()
gr.Markdown("## Extra Customer Info Sample")
extra_info_output = gr.DataFrame()
generate_info = gr.Textbox(label="Generation Info")
generate_btn.click(fn=generate_and_display_data,
inputs=num_customers_input,
outputs=[basic_info_output, extra_info_output, generate_info])
with gr.Tab("Run RCT Simulation"):
gr.Markdown("# Run a Randomized Control Experiment for data collection and analysis")
gr.Markdown("In this section we simulate running an Experiment where we offer customers different levels of discounts in the Electronics department.")
gr.Markdown("We randomly split the customers in 4 groups: Control, 5% discount, 10% discount and 15% discount")
gr.Markdown("During the experiment runtime we record all the purchases made by the customers. We can decide how long to run the experiment for, where longer periods lead to less noise and more significance in the results.")
experiment_duration_input = gr.Slider(minimum=10, maximum=60, value=30, step=1, label="Experiment Duration (days)")
rct_btn = gr.Button("Run RCT Simulation")
gr.Markdown("## Customer assigment to experiment group:")
assignments_output = gr.DataFrame()
gr.Markdown("## Purchases made during experiment runtime:")
transactions_output = gr.DataFrame()
rct_info = gr.Textbox(label="RCT Simulation Info")
rct_btn.click(fn=run_and_display_rct,
inputs=experiment_duration_input,
outputs=[assignments_output, transactions_output, rct_info])
with gr.Tab("Analyze RCT Results"):
gr.Markdown("# Experiment Analysis")
gr.Markdown("In this section we analyze the experiment results. We measure, per each discount value (5%, 10%, 15%) what is the incremental number of Purchases and the incremental Profit compared to the Control group.")
analyze_btn = gr.Button("Analyze RCT Results")
gr.Markdown("## Overall metrics")
overall_metrics_output = gr.DataFrame()
gr.Markdown("## Metrics by Variant")
variant_metrics_output = gr.DataFrame()
gr.Markdown("## Metrics per Variant visualization")
gr.Markdown("## To-Do: Add confidence intervals")
plot_output = gr.Plot()
analysis_info = gr.Textbox(label="Analysis Info")
analyze_btn.click(fn=analyze_and_display_results,
inputs=[],
outputs=[overall_metrics_output, variant_metrics_output, plot_output, analysis_info])
with gr.Tab("Exploratory Data Analysis"):
gr.Markdown("# Exploratory Data Analysis")
gr.Markdown("In this section, we explore the impact of discounts on different customer segments.")
discount_dropdown = gr.Dropdown(
choices=['5% discount', '10% discount', '15% discount'],
label="Select discount level to analyze",
value='10% discount'
)
eda_btn = gr.Button("Perform EDA")
eda_info = gr.Textbox(label="EDA Information")
gr.Markdown("## Newsletter Subscription Analysis")
newsletter_results = gr.DataFrame(label="Newsletter Subscription Results")
newsletter_plot = gr.Plot(label="Newsletter Subscription Plot")
gr.Markdown("## Preferred Payment Method Analysis")
payment_results = gr.DataFrame(label="Preferred Payment Method Results")
payment_plot = gr.Plot(label="Preferred Payment Method Plot")
eda_btn.click(
fn=perform_eda,
inputs=[discount_dropdown],
outputs=[eda_info, newsletter_results, payment_results, newsletter_plot, payment_plot]
)
with gr.Tab("Build Uplift Model"):
gr.Markdown("## Build Uplift Models for All Discount Levels")
feature_checklist = gr.CheckboxGroup(
choices=['age', 'gender', 'region', 'preferred_language', 'newsletter_subscription',
'preferred_payment_method', 'loyalty_level', 'main_browsing_device',
'average_order_value', 'total_orders'],
label="Select features for the models",
value=['age', 'gender', 'loyalty_level', 'average_order_value', 'total_orders']
)
build_model_btn = gr.Button("Build Uplift Models")
model_info = gr.Textbox(label="Model Information")
feature_importance_plot = gr.Plot(label="Feature Importance for All Models (Train Set)")
uplift_plot = gr.Plot(label="Incremental Profit vs Incremental Purchases (All Models)")
build_model_btn.click(
fn=build_models_and_display,
inputs=[feature_checklist],
outputs=[model_info, feature_importance_plot, uplift_plot]
)
with gr.Tab("Run Targeting Policy"):
gr.Markdown("# Run Targeting Policy Experiment")
gr.Markdown("In this section, we run an experiment using a targeted policy based on the uplift models.")
discount_level = gr.Dropdown(
choices=['5% discount', '10% discount', '15% discount'],
label="Select discount level for targeting",
value='10% discount',
interactive=True
)
target_percentage = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Percentage of Audience Targeted", interactive=True)
experiment_duration = gr.Slider(minimum=10, maximum=60, value=30, step=1, label="Experiment Duration (days)", interactive=True)
run_targeting_btn = gr.Button("Run Targeting Policy Experiment")
targeting_info = gr.Textbox(label="Targeting Experiment Info")
gr.Markdown("## Experiment Results")
targeting_results = gr.DataFrame(label="Targeting Experiment Results")
targeting_plot = gr.Plot(label="Incremental Profit vs Incremental Purchases by Variant")
def run_and_analyze_targeting(discount, percentage, duration):
assignment_df, transactions_df, info = run_targeting_policy(discount, percentage, duration)
if transactions_df is None:
return info, None, None
results, plot = analyze_targeting_results(assignment_df, transactions_df)
return info, results, plot
run_targeting_btn.click(
fn=run_and_analyze_targeting,
inputs=[discount_level, target_percentage, experiment_duration],
outputs=[targeting_info, targeting_results, targeting_plot]
)
demo.launch()