rknl commited on
Commit
5aa3509
·
verified ·
1 Parent(s): 7579f1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +186 -59
app.py CHANGED
@@ -2,30 +2,28 @@ import os,re
2
  import gradio as gr
3
  import nest_asyncio
4
  from langchain import PromptTemplate
5
- from llama_index.core import StorageContext, load_index_from_storage
 
 
6
  import networkx as nx
7
  from pyvis.network import Network
8
  from IPython.display import HTML, Markdown, display
9
 
10
- # nest_asyncio.apply()
11
-
12
- kg_index_path = "./telcom_full_property_kg_processed_dynamicpath2_withpackagedata_category/"
13
- kg_plot_path = kg_index_path+"full_kg.html"
14
  os.environ["OPENAI_API_KEY"] = os.getenv('oai')
15
 
16
 
17
- index = load_index_from_storage(
 
 
 
18
  StorageContext.from_defaults(persist_dir=kg_index_path)
19
  )
20
- query_engine = index.as_query_engine(
21
- include_text=True,
22
- similarity_top_k=20,
23
- )
24
- retriever = index.as_retriever(
25
- include_text=True, # include source text, default True
26
- similarity_top_k=20,
27
- )
28
 
 
 
 
 
 
29
 
30
  teamplate_prompt_upsell = '''You are a virtual assistant for a telecom company, designed to assist users with their queries and potentially upsell services. Your task is to analyze the customer's data from context, their query, and offer the most appropriate assistance.
31
 
@@ -66,41 +64,70 @@ Remember to always prioritize customer satisfaction and only suggest upsells whe
66
  '''
67
 
68
 
 
69
 
 
70
 
71
- def parse_response_with_regex(xml_response):
72
- # Define regex patterns for each tag
73
- query_type_pattern = re.compile(r'<query_type>(.*?)</query_type>', re.DOTALL)
74
- answer_pattern = re.compile(r'<answer>(.*?)</answer>', re.DOTALL)
75
- reference_pattern = re.compile(r'<reference>(.*?)</reference>', re.DOTALL)
76
- facts_pattern = re.compile(r'<facts>(.*?)</facts>', re.DOTALL)
77
- upsell_opportunity_pattern = re.compile(r'<upsell_opportunity>(.*?)</upsell_opportunity>', re.DOTALL)
78
 
79
- # Extract data using regex
80
- query_type = query_type_pattern.search(xml_response).group(1).strip()
81
- answer = answer_pattern.search(xml_response).group(1).strip()
82
- reference = reference_pattern.search(xml_response).group(1).strip()
83
- facts = facts_pattern.search(xml_response).group(1).strip()
84
- upsell_opportunity = upsell_opportunity_pattern.search(xml_response).group(1).strip()
85
 
86
- # Format the extracted information
87
- formatted_response = f"""
88
- ### Query Type
89
- {query_type}
90
 
91
- ### Answer
92
- {answer}
 
93
 
94
- ### Reference
95
- {reference}
96
 
97
- ### Facts
98
- {facts}
 
 
99
 
100
- ### Upsell Opportunity
101
- {upsell_opportunity}
102
- """
103
- return formatted_response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  def extract_pattern_triplet(text):
106
  # Define the regex pattern to match the desired format
@@ -109,15 +136,61 @@ def extract_pattern_triplet(text):
109
  matches = pattern.findall(text)
110
  return "\n <br> ".join(matches)
111
 
112
- def query_tqa(query):
113
- data = {
114
- 'QUERY': query
115
- }
116
- prompt = PromptTemplate(template=teamplate_prompt_upsell, input_variables=["QUERY"])
117
- query_ready = prompt.format(**data)
118
- response = query_engine.query(query_ready)
119
- nodes = retriever.retrieve(query_ready)
120
- parsed_resp = parse_response_with_regex(str(response))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
  reference = []
123
  reference_text = []
@@ -125,11 +198,36 @@ def query_tqa(query):
125
  reference.append(extract_pattern_triplet(node.text))
126
  reference_text.append(node.text)
127
 
128
- return parsed_resp, response, reference , reference_text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
  def plot_full_kg():
131
  """Plot the full knowledge graph and return the HTML representation."""
132
- return HTML(filename=kg_plot_path)
 
 
133
 
134
  with gr.Blocks() as demo:
135
  gr.Markdown("<h1>Telcom Graph-RAG v0.1</h1>")
@@ -137,23 +235,51 @@ with gr.Blocks() as demo:
137
  with gr.Tab("Virtual Assistant"):
138
  with gr.Row():
139
  query_input = gr.Textbox(label="Input Your Query..")
 
 
140
  with gr.Row():
141
- model_output = gr.Textbox(label="Response")
142
- model_metadata = gr.Textbox(label="Raw Response")
 
 
 
 
 
 
 
143
  with gr.Row():
144
- reference = gr.HTML(label="Extracted Reference")
145
- reference_text = gr.Textbox(label="Extracted Reference raw")
 
146
 
147
 
148
- ask_button = gr.Button("Ask TelcomVA!!")
149
 
150
  with gr.Accordion("Explore KG!", open=False):
151
- gr.Markdown("This KG is built using a subset of Github repositories. ")
152
  kg_output = gr.HTML()
153
  plot_button = gr.Button("Plot Full KG!!")
154
 
155
- ask_button.click(query_tqa, inputs=[query_input], outputs=[model_output,model_metadata,reference,reference_text])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
  plot_button.click(plot_full_kg, outputs=kg_output)
 
157
  examples = gr.Examples(
158
  examples=[
159
  ["what are the upselling ideas for roaming package you can recommend for customer Rina Wati."],
@@ -161,5 +287,6 @@ with gr.Blocks() as demo:
161
  inputs=[query_input]
162
  )
163
 
 
164
  demo.launch(auth=(os.getenv('id'), os.getenv('pass')), share=True)
165
  # demo.launch(share=False)
 
2
  import gradio as gr
3
  import nest_asyncio
4
  from langchain import PromptTemplate
5
+ from llama_index.core import PromptTemplate, StorageContext, load_index_from_storage
6
+ from llama_index.llms.openai import OpenAI
7
+
8
  import networkx as nx
9
  from pyvis.network import Network
10
  from IPython.display import HTML, Markdown, display
11
 
 
 
 
 
12
  os.environ["OPENAI_API_KEY"] = os.getenv('oai')
13
 
14
 
15
+ #Graph-RAG
16
+ kg_index_path = "./telcom_full_property_kg_processed_dynamicpath2_withpackagedata_category/"
17
+ kg_plot_path = kg_index_path+"/full_kg.html"
18
+ graph_rag_index = load_index_from_storage(
19
  StorageContext.from_defaults(persist_dir=kg_index_path)
20
  )
 
 
 
 
 
 
 
 
21
 
22
+ #RAG
23
+ rag_index_path = "./telcom_RAG_full_withpackagedata_category/"
24
+ rag_index = load_index_from_storage(
25
+ StorageContext.from_defaults(persist_dir=rag_index_path)
26
+ )
27
 
28
  teamplate_prompt_upsell = '''You are a virtual assistant for a telecom company, designed to assist users with their queries and potentially upsell services. Your task is to analyze the customer's data from context, their query, and offer the most appropriate assistance.
29
 
 
64
  '''
65
 
66
 
67
+ llm_eval_prompt = """You are an AI tasked with evaluating the performance of a language model (LLM) based on a given query and response. Your role is to assess the LLM's output using four specific metrics and provide scores for each.
68
 
69
+ Here are the metrics you will use to evaluate the LLM's performance:
70
 
71
+ 1. Comprehensiveness: How thoroughly and completely the response addresses all aspects of the query.
72
+ 2. Diversity: The variety of perspectives, examples, or approaches included in the response.
73
+ 3. Empowerment: How well the response enables the user to understand or act on the information provided.
74
+ 4. Directness: The clarity and conciseness of the response in addressing the query.
 
 
 
75
 
76
+ To perform your evaluation, carefully analyze the following query and response:
 
 
 
 
 
77
 
78
+ <query>
79
+ {QUERY}
80
+ </query>
 
81
 
82
+ <response>
83
+ {RESPONSE}
84
+ </response>
85
 
86
+ For each metric, consider the following:
 
87
 
88
+ 1. Comprehensiveness: Does the response cover all aspects of the query? Are there any missing or underdeveloped points?
89
+ 2. Diversity: Does the response offer multiple viewpoints or examples? Is there a good range of information or approaches presented?
90
+ 3. Empowerment: Does the response provide actionable information or insights? Does it enhance the user's understanding or ability to address the query?
91
+ 4. Directness: Is the response clear and to the point? Does it avoid unnecessary information or tangents?
92
 
93
+ Score each metric on a scale from 0 to 5, where 0 is the lowest (poor performance) and 5 is the highest (excellent performance).
94
+
95
+ For each metric, provide a brief justification for your score before stating the score itself. Your justification should reference specific aspects of the query and response that influenced your decision.
96
+
97
+ Present your evaluation in the following format:
98
+
99
+ <evaluation>
100
+ <metric name="Comprehensiveness">
101
+ <justification>
102
+ [Your justification for the Comprehensiveness score]
103
+ </justification>
104
+ <score>[Your score from 0-5]</score>
105
+ </metric>
106
+
107
+ <metric name="Diversity">
108
+ <justification>
109
+ [Your justification for the Diversity score]
110
+ </justification>
111
+ <score>[Your score from 0-5]</score>
112
+ </metric>
113
+
114
+ <metric name="Empowerment">
115
+ <justification>
116
+ [Your justification for the Empowerment score]
117
+ </justification>
118
+ <score>[Your score from 0-5]</score>
119
+ </metric>
120
+
121
+ <metric name="Directness">
122
+ <justification>
123
+ [Your justification for the Directness score]
124
+ </justification>
125
+ <score>[Your score from 0-5]</score>
126
+ </metric>
127
+ </evaluation>
128
+
129
+ Ensure that your evaluation is fair, objective, and based solely on the provided query and response. Do not make assumptions about information not present in the given text.
130
+ """
131
 
132
  def extract_pattern_triplet(text):
133
  # Define the regex pattern to match the desired format
 
136
  matches = pattern.findall(text)
137
  return "\n <br> ".join(matches)
138
 
139
+ def query_rag_qa(query,search_level):
140
+ """
141
+ A function to query the RAG QA with a given query and search level.
142
+ It returns the response, nodes, and response metadata.
143
+ Parameters:
144
+ - query: The query to search for
145
+ - search_level: The level of similarity to search for
146
+ Return:
147
+ - response: The query response
148
+ - nodes: The retrieved nodes
149
+ - metadata: The metadata of the response
150
+ """
151
+ myretriever = rag_index.as_retriever(
152
+ include_text=True, # include source text, default True
153
+ similarity_top_k=search_level,
154
+ )
155
+ query_engine = rag_index.as_query_engine(
156
+ sub_retrievers=[
157
+ myretriever,
158
+ ],
159
+ include_text=True,
160
+ similarity_top_k=search_level,
161
+ )
162
+ response = query_engine.query(query)
163
+ nodes = myretriever.retrieve(query)
164
+
165
+ return response, nodes, response.metadata
166
+
167
+
168
+ def query_graph_rag_qa(query,search_level):
169
+ """
170
+ A function to query the RAG QA with a given query and search level.
171
+ It returns the response, reference, and reference text.
172
+ Parameters:
173
+ - query: The query to search for
174
+ - search_level: The level of similarity to search for
175
+ Return:
176
+ - response: The query response
177
+ - reference: The extracted patterns
178
+ - reference_text: The text of the extracted patterns
179
+ """
180
+ myretriever = graph_rag_index.as_retriever(
181
+ include_text=True, # include source text, default True
182
+ similarity_top_k=search_level,
183
+ )
184
+ query_engine = graph_rag_index.as_query_engine(
185
+ sub_retrievers=[
186
+ myretriever,
187
+ ],
188
+ include_text=True,
189
+ similarity_top_k=search_level,
190
+ )
191
+ response = query_engine.query(query)
192
+ nodes = myretriever.retrieve(query)
193
+ # parsed_resp = parse_response_with_regex(str(response))
194
 
195
  reference = []
196
  reference_text = []
 
198
  reference.append(extract_pattern_triplet(node.text))
199
  reference_text.append(node.text)
200
 
201
+ return response, reference , reference_text
202
+
203
+ def query_tqa(query,search_level):
204
+ grag_response, grag_reference , grag_reference_text = query_graph_rag_qa(query,search_level)
205
+ rag_response, rag_reference, rag_reference_text = query_rag_qa(query,search_level)
206
+ return grag_response, grag_reference , grag_reference_text, rag_response, rag_reference, rag_reference_text
207
+
208
+
209
+ def eval_llm(query,rag_response,grag_response):
210
+ data = {'QUERY': query,
211
+ 'RESPONSE': rag_response
212
+ }
213
+ prompt = PromptTemplate(llm_eval_prompt)
214
+ query_ready = prompt.format(**data)
215
+ rag_eval = OpenAI().complete(query_ready)
216
+
217
+ data = {'QUERY': query,
218
+ 'RESPONSE': grag_response
219
+ }
220
+ prompt = PromptTemplate(llm_eval_prompt)
221
+ query_ready = prompt.format(**data)
222
+ grag_eval = OpenAI().complete(query_ready)
223
+ return grag_eval,rag_eval
224
+
225
 
226
  def plot_full_kg():
227
  """Plot the full knowledge graph and return the HTML representation."""
228
+ # return HTML(filename=kg_plot_path)
229
+ with open(kg_plot_path, "r") as file:
230
+ return file.read()
231
 
232
  with gr.Blocks() as demo:
233
  gr.Markdown("<h1>Telcom Graph-RAG v0.1</h1>")
 
235
  with gr.Tab("Virtual Assistant"):
236
  with gr.Row():
237
  query_input = gr.Textbox(label="Input Your Query..")
238
+ search_level = gr.Slider(minimum=1, maximum=50, value=3, step=5, label="Search level")
239
+ ask_button = gr.Button("Ask TelcomVA!!")
240
  with gr.Row():
241
+ with gr.Accordion("Graph-RAG!", open=True):
242
+ grag_output = gr.Textbox(label="Response")
243
+ grag_reference = gr.Textbox(label="Triplets")
244
+ grag_reference_text = gr.Textbox(label="Extracted Reference raw")
245
+
246
+ with gr.Accordion("RAG", open=True):
247
+ rag_output = gr.Textbox(label="Response")
248
+ rag_reference = gr.Textbox(label="Extracted Reference")
249
+ rag_reference_text = gr.Textbox(label="Extracted Reference raw")
250
  with gr.Row():
251
+ grag_performance = gr.Textbox(label="Graph-RAG Performance")
252
+ rag_performance = gr.Textbox(label="RAG Performance")
253
+ eval_button = gr.Button("Evaluate LLMs!!")
254
 
255
 
 
256
 
257
  with gr.Accordion("Explore KG!", open=False):
 
258
  kg_output = gr.HTML()
259
  plot_button = gr.Button("Plot Full KG!!")
260
 
261
+ ask_button.click(query_tqa,
262
+ inputs=[query_input,search_level],
263
+ outputs=[
264
+ grag_output,
265
+ grag_reference,
266
+ grag_reference_text,
267
+ rag_output,
268
+ rag_reference,
269
+ rag_reference_text
270
+ ]
271
+ )
272
+
273
+ eval_button.click(eval_llm,
274
+ inputs=[query_input,rag_output,grag_output],
275
+ outputs=[
276
+ grag_performance,
277
+ rag_performance
278
+ ]
279
+ )
280
+
281
  plot_button.click(plot_full_kg, outputs=kg_output)
282
+
283
  examples = gr.Examples(
284
  examples=[
285
  ["what are the upselling ideas for roaming package you can recommend for customer Rina Wati."],
 
287
  inputs=[query_input]
288
  )
289
 
290
+
291
  demo.launch(auth=(os.getenv('id'), os.getenv('pass')), share=True)
292
  # demo.launch(share=False)