Spaces:
Sleeping
Sleeping
File size: 13,792 Bytes
6f4f21f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from data_utils.data_generation import UpliftSimulation
from data_utils.exploratory_data_analysis import ExploratoryAnalysis
from data_utils.feature_importance import FeatureImportance
from models_utils.ml_models import ModelTraining
from eval_utils.evaluation import ModelEvaluator
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
X_names = [
'AgeIndex', 'IncomeIndex', 'PurchaseFrequencyIndex',
'AccountLifetimeIndex', 'AverageTransactionValueIndex', 'PreferredPaymentMethodIndex', 'RegionIndex',
'EmailDiscountCTRIndex', 'WebDiscountCTRIndex', 'SocialMediaEngagementIndex',
'DirectMailDiscountResponseIndex', 'InAppDiscountEngagementIndex', 'FlashSaleParticipationIndex',
'SeasonalPromoInterestIndex', 'LoyaltyProgramEngagementIndex', 'ReferralBonusUsageIndex',
'DiscountCodeRedemptionIndex', 'VIPSaleAccessIndex', 'EarlyAccessOptInIndex',
'ProductReviewAfterDiscountIndex', 'UpsellConversionIndex', 'CrossSellInterestIndex',
'BundlePurchaseIndex', 'SubscriptionUpgradeIndex', 'CustomerFeedbackIndex',
'BrowserTypeIndex', 'DeviceCategoryIndex', 'OperatingSystemIndex',
'SessionStartTimeIndex', 'LanguagePreferenceIndex', 'NewsletterSubscriptionIndex',
'AccountVerificationStatusIndex', 'AdBlockerPresenceIndex'
]
# Title
st.title("Uplift Modeling in Retail Demo")
tabs = st.sidebar.radio("Navigation", ["Data generation", "Exploratory analysis", "Model training", "Economic effects"])
if tabs == "Data generation":
st.header("Data Generation")
# Description
st.write("""
This app creates a simulated dataset for a special kind of analysis called uplift modeling, which helps understand the effect of different actions (like promotions) on customer behavior. We use some default settings to make things easy:
- We're looking at whether customers make a purchase or not.
- We compare different types of promotions (like no discount, 5% off, etc.).
- The dataset includes 15 different pieces of information (features) about each customer.
""")
# Interactive number of samples selection
n = st.number_input('Number of Samples (n)', min_value=1000, value=10000, step=1000,
help="Total number of samples to generate in the dataset.")
# Default values for other variables
y_name = 'conversion'
treatment_group_keys = ['control', 'discount_05', 'discount_10', 'discount_15']
n_classification_features = 15
n_classification_informative = 7
n_classification_repeated = 0
n_uplift_increase_dict = {'discount_05': 4, 'discount_10': 3, 'discount_15': 3}
n_uplift_decrease_dict = {'discount_05': 0, 'discount_10': 0, 'discount_15': 0}
positive_class_proportion = 0.05
random_seed = 8097
# Button to generate dataset
if st.button('Generate Dataset'):
uplift_sim = UpliftSimulation(n=n, y_name=y_name, treatment_group_keys=treatment_group_keys,
n_classification_features=n_classification_features,
n_classification_informative=n_classification_informative,
n_classification_repeated=n_classification_repeated,
n_uplift_increase_dict=n_uplift_increase_dict,
n_uplift_decrease_dict=n_uplift_decrease_dict,
positive_class_proportion=positive_class_proportion,
random_seed=random_seed)
uplift_sim.simulate_dataset()
uplift_sim.apply_discounts_and_clean()
uplift_sim.postprocess_tables()
uplift_sim.add_monetary_effect()
st.session_state.uplift_sim = uplift_sim # Store in session state
st.write("Dataset Generated Successfully!")
st.subheader("User profiles")
st.write('Features that represent a customer such as age, income, purchase frequency, etc')
st.dataframe(uplift_sim.dataframes[0].head(3))
st.subheader("Treatments data")
st.write('Information about the different treatments (discounts) that were applied to the customers as discounts in different channels (web, email, mobile), early access, etc')
st.dataframe(uplift_sim.dataframes[1].head(3))
st.subheader("Other data")
st.write('Other data that can be used in the analysis')
st.dataframe(uplift_sim.dataframes[2].head(3))
if tabs == "Exploratory analysis":
st.header("Exploratory Analysis")
if 'uplift_sim' in st.session_state:
st.subheader('Summary statistics')
uplift_sim = st.session_state.uplift_sim
eda = ExploratoryAnalysis(uplift_sim.df)
st.write('We begin by computing the total sum of conversions, sales (discounted price) and platform benefit. We can see that the total conversions and the total sales grows as the discount value is bigger. However, the platform benefit decreases.')
sum_conversions, mean_conversions = eda.compute_summaries()
st.write(sum_conversions)
st.write(mean_conversions)
st.write('We can also visualize the tradeoff between conversions and platform benefit by plotting the mean benefit per user on the y-axis and the mean conversion rate on the x-axis, for each treatment group.')
mean_benefit_vs_conversion = eda.compute_mean_benefit_vs_conversion()
fig, ax = plt.subplots()
mean_benefit_vs_conversion.plot.scatter(x='conversion', y='benefit', c='DarkBlue', s=50, ax=ax)
st.pyplot(fig)
st.write('''
We further compute the Average Treatment Effect (ATE) for both the mean conversion rate and the mean benefit per user:
- Conversion ATE = Mean Conversion rate in the discounted group minus Mean Conversion rate in the control group
- Benefit ATE = Mean Benefit per user in the discounted group minus Mean Benefit per user in the control group
This helps illustrate how the discount value affects Conversion ATE and Benefit ATE.
''')
mean_conversions_ate = eda.compute_ate()
fig, ax = plt.subplots()
mean_conversions_ate.plot.scatter(x='conversion', y='benefit', c='DarkBlue', s=50, ax=ax)
st.pyplot(fig)
st.subheader('Feature importance')
# Allow users to select a treatment group
treatment_group = st.selectbox(
'Select a treatment group',
options=['discount_05', 'discount_10', 'discount_15'],
index=0 # default to 'discount_05'
)
feature_importance = FeatureImportance(uplift_sim.df, X_names, y_name = 'conversion', treatment_group = treatment_group)
fi = feature_importance.compute_feature_importance()
fig, ax = plt.subplots()
di_df_sorted = fi.sort_values(by='score', ascending=False)
di_df_sorted[['feature', 'score']].plot.barh(x='feature', y='score', ax=ax)
st.pyplot(fig)
st.write("""
- AccountLifetimeIndex: Longer-standing accounts are key predictors of customer response to promotions \n
- CustomerFeedbackIndex: Customer feedback significantly influences the success of marketing strategies \n
- UpsellConversionIndex: The success rate of upselling is an important factor \n
- PurchaseFrequencyIndex: More frequent purchases indicate higher engagement and response to marketing efforts \n
- ReferralBonusUsedIndex and LoyaltyProgramEngagementIndex: Engagement with these programs is highly indicative of responsiveness to promotions
""")
else:
st.error("Please generate the dataset first.")
if tabs == "Model training":
st.header("Model Training")
if 'uplift_sim' in st.session_state:
uplift_sim = st.session_state.uplift_sim
model_trainer = ModelTraining(uplift_sim.df, 'conversion', X_names)
model_type = st.radio("Choose the model type", ('Conversion Model', 'Benefit Model'))
params = {
'n_estimators': st.slider('Number of Estimators', 10, 100, 50),
'max_depth': st.slider('Max Depth', 1, 10, 4),
'colsample_bytree': st.slider('Colsample by Tree', 0.1, 1.0, 0.2),
'subsample': st.slider('Subsample', 0.1, 1.0, 0.2),
}
control_name = 'control' # st.text_input('Control Group Name', 'control')
test_size = st.slider('Test Size', 0.1, 0.9, 0.5)
random_state = 20143 # st.slider('Random State', 0, 10000, 20143)
if st.button('Train Model'):
model_trainer.split_data(test_size=test_size, random_state=random_state)
if model_type == 'Conversion Model':
y_name = 'conversion' # st.selectbox('Select target variable for conversion', options=uplift_sim.target_options)
model_trainer.y_name = y_name
tau = model_trainer.fit_predict_classifier(params, control_name)
elif model_type == 'BATE Model':
y_name = 'benefit' # st.selectbox('Select target variable for benefit', options=uplift_sim.benefit_options)
model_trainer.y_name = y_name
tau = model_trainer.fit_predict_regressor(params, control_name)
st.session_state.model_trainer = model_trainer
feature_importances = model_trainer.compute_feature_importance()
st.subheader('Feature Importances')
fig, ax = plt.subplots()
for k, v in feature_importances.items():
st.write(f"Feature importance for {k}")
v.plot(kind='barh', ax=ax)
ax.set_xlabel("Importance")
ax.set_ylabel("Feature")
ax.set_title(f"Feature Importance for {model_type}")
st.pyplot(fig)
else:
st.error("Please generate and preprocess the dataset first.")
if tabs == "Economic effects":
st.header("Economic Effects Analysis")
if 'uplift_sim' in st.session_state and 'model_trainer' in st.session_state:
df_test = st.session_state.model_trainer.df_test
model_type = st.radio("Choose the model type for analysis", ('Conversion Model', 'Benefit Model'))
# Determine which model to use based on user selection
if model_type == 'Conversion Model':
model = st.session_state.model_trainer.conversion_learner_t
elif model_type == 'Benefit Model':
model = st.session_state.model_trainer.benefit_learner_t
else:
st.error("Invalid model type selected.")
st.stop()
if model == None:
st.error("Please train the model first.")
st.stop()
evaluator = ModelEvaluator(model,
df_test,
X_names # df_test.columns.drop(['conversion', 'benefit', 'treatment_group_key'])
)
discounts = ['discount_05', 'discount_10', 'discount_15']
qini_conversions = {}
qini_benefits = {}
for discount in discounts:
qini_conv, qini_ben = evaluator.eval_performance(discount)
qini_conversions[discount] = qini_conv
qini_benefits[discount] = qini_ben
# Plotting CATE Conversion
st.subheader("CATE Conversion vs Targeted Population")
fig, ax_conversion = plt.subplots()
for discount, color in zip(discounts, ['b', 'g', 'y']):
qini_conversions[discount].plot(ax=ax_conversion, x='index', y='S', color=color)
qini_conversions[discount].plot(ax=ax_conversion, x='index', y='Random', color='r', ls='--')
ax_conversion.legend([f'{d} model' for d in discounts] + [f'{d} random' for d in discounts], prop={'size': 10})
ax_conversion.set_xlabel('Fraction of Targeted Users')
ax_conversion.set_ylabel('CATE Conversion')
ax_conversion.set_title('CATE Conversion vs Targeted Population')
st.pyplot(fig)
# Plotting CATE Benefit
st.subheader("CATE Benefit vs Targeted Population")
fig, ax_benefit = plt.subplots()
for discount, color in zip(discounts, ['b', 'g', 'y']):
qini_benefits[discount].plot(ax=ax_benefit, x='index', y='S', color=color)
qini_benefits[discount].plot(ax=ax_benefit, x='index', y='Random', color='r', ls='--')
ax_benefit.legend([f'{d} model' for d in discounts] + [f'{d} random' for d in discounts], prop={'size': 10})
ax_benefit.set_xlabel('Fraction of Targeted Users')
ax_benefit.set_ylabel('CATE Benefit')
ax_benefit.set_title('CATE Benefit vs Targeted Population')
st.pyplot(fig)
# Plotting CATE Benefit vs CATE Conversion
st.subheader("CATE Benefit vs CATE Conversion")
fig, ax_comp = plt.subplots()
colors = ['b', 'g', 'y']
for i, discount in enumerate(discounts):
qini_conc_test = pd.concat([qini_conversions[discount][['S']], qini_benefits[discount][['S']]], axis=1)
qini_conc_test.columns = ['cate_conversion', 'cate_benefit']
qini_conc_test.plot(ax=ax_comp, x='cate_conversion', y='cate_benefit', color=colors[i], label=f'{discount} model')
ax_comp.legend(prop={'size': 10})
ax_comp.set_xlabel('CATE Conversion')
ax_comp.set_ylabel('CATE Benefit')
ax_comp.set_title('CATE Benefit vs CATE Conversion')
st.pyplot(fig)
else:
st.error("Please ensure the model is trained and the dataset is prepared.")
|