Spaces:
Sleeping
Sleeping
File size: 22,005 Bytes
6f4f21f dcbe801 6f4f21f dcbe801 6f4f21f dcbe801 6f4f21f dcbe801 6f4f21f dcbe801 6f4f21f 019a614 6f4f21f 019a614 6f4f21f dcbe801 6f4f21f dcbe801 6f4f21f 019a614 6f4f21f dcbe801 6f4f21f dcbe801 6f4f21f dcbe801 6f4f21f dcbe801 6f4f21f dcbe801 019a614 dcbe801 6f4f21f 019a614 6f4f21f dcbe801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
from data_utils.data_generation import UpliftSimulation
from data_utils.exploratory_data_analysis import ExploratoryAnalysis
from data_utils.feature_importance import FeatureImportance
from models_utils.ml_models import ModelTraining
from eval_utils.evaluation import ModelEvaluator
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import pandas as pd
import streamlit as st
X_names = [
'AgeIndex', 'IncomeIndex', 'PurchaseFrequencyIndex',
'AccountLifetimeIndex', 'AverageTransactionValueIndex', 'PreferredPaymentMethodIndex', 'RegionIndex',
'EmailDiscountCTRIndex', 'WebDiscountCTRIndex', 'SocialMediaEngagementIndex',
'DirectMailDiscountResponseIndex', 'InAppDiscountEngagementIndex', 'FlashSaleParticipationIndex',
'SeasonalPromoInterestIndex', 'LoyaltyProgramEngagementIndex', 'ReferralBonusUsageIndex',
'DiscountCodeRedemptionIndex', 'VIPSaleAccessIndex', 'EarlyAccessOptInIndex',
'ProductReviewAfterDiscountIndex', 'UpsellConversionIndex', 'CrossSellInterestIndex',
'BundlePurchaseIndex', 'SubscriptionUpgradeIndex', 'CustomerFeedbackIndex',
'BrowserTypeIndex', 'DeviceCategoryIndex', 'OperatingSystemIndex',
'SessionStartTimeIndex', 'LanguagePreferenceIndex', 'NewsletterSubscriptionIndex',
'AccountVerificationStatusIndex', 'AdBlockerPresenceIndex'
]
# Title
st.title("Uplift Modeling in Retail Demo")
tabs = st.sidebar.radio("Navigation", ["Data generation", "Exploratory analysis", "Model training", "Economic effects"])
if tabs == "Data generation":
st.header("Data Generation")
# Description
st.write("""
This app creates a simulated dataset for a special kind of analysis called uplift modeling, which helps understand the effect of different actions (like promotions) on customer behavior. We use some default settings to make things easy:
- We're looking at whether customers make a purchase or not.
- We compare different types of promotions (like no discount, 5% off, etc.).
- The dataset includes 15 different pieces of information (features) about each customer.
""")
# Interactive number of samples selection
n = st.number_input('Number of Samples (n)', min_value=1000, value=10000, step=1000,
help="Total number of samples to generate in the dataset.")
# Default values for other variables
y_name = 'conversion'
treatment_group_keys = ['control', 'discount_05', 'discount_10', 'discount_15']
n_classification_features = 15
n_classification_informative = 7
n_classification_repeated = 0
n_uplift_increase_dict = {'discount_05': 4, 'discount_10': 3, 'discount_15': 3}
n_uplift_decrease_dict = {'discount_05': 0, 'discount_10': 0, 'discount_15': 0}
positive_class_proportion = 0.05
random_seed = 8097
# Button to generate dataset
if st.button('Generate Dataset'):
uplift_sim = UpliftSimulation(n=n, y_name=y_name, treatment_group_keys=treatment_group_keys,
n_classification_features=n_classification_features,
n_classification_informative=n_classification_informative,
n_classification_repeated=n_classification_repeated,
n_uplift_increase_dict=n_uplift_increase_dict,
n_uplift_decrease_dict=n_uplift_decrease_dict,
positive_class_proportion=positive_class_proportion,
random_seed=random_seed)
uplift_sim.simulate_dataset()
uplift_sim.apply_discounts_and_clean()
uplift_sim.postprocess_tables()
uplift_sim.add_monetary_effect()
st.session_state.uplift_sim = uplift_sim # Store in session state
st.write("Dataset Generated Successfully!")
st.subheader("User profiles")
st.write('Features that represent a customer such as age, income, purchase frequency, etc')
st.dataframe(uplift_sim.dataframes[0].head(3))
st.subheader("Treatments data")
st.write('Information about the different treatments (discounts) that were applied to the customers as discounts in different channels (web, email, mobile), early access, etc')
st.dataframe(uplift_sim.dataframes[1].head(3))
st.subheader("Other data")
st.write('Other data that can be used in the analysis')
st.dataframe(uplift_sim.dataframes[2].head(3))
if tabs == "Exploratory analysis":
st.header("Exploratory Analysis")
if 'uplift_sim' in st.session_state:
st.subheader('Summary statistics')
uplift_sim = st.session_state.uplift_sim
eda = ExploratoryAnalysis(uplift_sim.df)
st.write('We begin by computing the total sum of conversions, sales (discounted price) and platform benefit. We can see that the total conversions and the total sales grows as the discount value is bigger. However, the platform benefit decreases.')
sum_conversions, mean_conversions = eda.compute_summaries()
st.write(sum_conversions)
st.write(mean_conversions)
st.write('We can also visualize the tradeoff between conversions and platform benefit by plotting the mean benefit per user on the y-axis and the mean conversion rate on the x-axis, for each treatment group.')
mean_benefit_vs_conversion = eda.compute_mean_benefit_vs_conversion()
# fig, ax = plt.subplots()
# mean_benefit_vs_conversion.plot.scatter(x='conversion', y='benefit', c='DarkBlue', s=50, ax=ax)
# st.pyplot(fig)
fig = px.scatter(mean_benefit_vs_conversion, x='conversion', y='benefit', color_discrete_sequence=['LightBlue'], size_max=50)
st.plotly_chart(fig)
st.write('''
We further compute the Average Treatment Effect (ATE) for both the mean conversion rate and the mean benefit per user:
- Conversion ATE = Mean Conversion rate in the discounted group minus Mean Conversion rate in the control group
- Benefit ATE = Mean Benefit per user in the discounted group minus Mean Benefit per user in the control group
This helps illustrate how the discount value affects Conversion ATE and Benefit ATE.
''')
mean_conversions_ate = eda.compute_ate()
# fig, ax = plt.subplots()
# mean_conversions_ate.plot.scatter(x='conversion', y='benefit', c='DarkBlue', s=50, ax=ax)
# st.pyplot(fig)
fig = px.scatter(mean_conversions_ate, x='conversion', y='benefit', color_discrete_sequence=['LightBlue'], size_max=50)
st.plotly_chart(fig)
st.subheader('Feature importance')
# Allow users to select a treatment group
treatment_group = st.selectbox(
'Select a treatment group',
options=['discount_05', 'discount_10', 'discount_15'],
index=0 # default to 'discount_05'
)
feature_importance = FeatureImportance(uplift_sim.df, X_names, y_name = 'conversion', treatment_group = treatment_group)
fi = feature_importance.compute_feature_importance()
# fig, ax = plt.subplots()
di_df_sorted = fi.sort_values(by='score', ascending=False)
# di_df_sorted[['feature', 'score']].plot.barh(x='feature', y='score', ax=ax)
# st.pyplot(fig)
fig = px.bar(di_df_sorted, y='feature', x='score', orientation='h')
st.plotly_chart(fig)
st.write("""
- AccountLifetimeIndex: Longer-standing accounts are key predictors of customer response to promotions \n
- CustomerFeedbackIndex: Customer feedback significantly influences the success of marketing strategies \n
- UpsellConversionIndex: The success rate of upselling is an important factor \n
- PurchaseFrequencyIndex: More frequent purchases indicate higher engagement and response to marketing efforts \n
- ReferralBonusUsedIndex and LoyaltyProgramEngagementIndex: Engagement with these programs is highly indicative of responsiveness to promotions
""")
else:
st.error("Please generate the dataset first.")
if tabs == "Model training":
st.header("Model Training")
st.write("""
In this section, we train a model to predict the uplift effect of different treatments on customer behavior.
We use the XGBoost algorithm to train the model. The model can be used to predict the conversion rate or the benefit per user for each treatment group.
We can also analyze the economic effects of the treatments by comparing the uplift in conversion rate and benefit per user.
""")
if 'uplift_sim' in st.session_state:
uplift_sim = st.session_state.uplift_sim
model_trainer = ModelTraining(uplift_sim.df, 'conversion', X_names)
model_type = st.radio("Choose the model type", ('Conversion Model', 'Benefit Model'))
params = {
'n_estimators': st.slider('Number of Estimators', 10, 100, 50),
'max_depth': st.slider('Max Depth', 1, 10, 4),
'colsample_bytree': st.slider('Colsample by Tree', 0.1, 1.0, 0.2),
'subsample': st.slider('Subsample', 0.1, 1.0, 0.2),
}
control_name = 'control' # st.text_input('Control Group Name', 'control')
test_size = st.slider('Test Size', 0.1, 0.9, 0.5)
random_state = 20143 # st.slider('Random State', 0, 10000, 20143)
if st.button('Train Model'):
model_trainer.split_data(test_size=test_size, random_state=random_state)
if model_type == 'Conversion Model':
y_name = 'conversion' # st.selectbox('Select target variable for conversion', options=uplift_sim.target_options)
model_trainer.y_name = y_name
tau = model_trainer.fit_predict_classifier(params, control_name)
elif model_type == 'Benefit Model':
y_name = 'benefit' # st.selectbox('Select target variable for benefit', options=uplift_sim.benefit_options)
model_trainer.y_name = y_name
tau = model_trainer.fit_predict_regressor(params, control_name)
st.session_state.model_trainer = model_trainer
feature_importances = model_trainer.compute_feature_importance()
st.subheader('Feature Importances')
fig, ax = plt.subplots()
# for k, v in feature_importances.items():
# st.write(f"Feature importance for {k}")
# v.plot(kind='barh', ax=ax)
# ax.set_xlabel("Importance")
# ax.set_ylabel("Feature")
# ax.set_title(f"Feature Importance for {model_type}")
# st.pyplot(fig)
for k, v in feature_importances.items():
# Reset index if 'v' is a Series or its index contains the feature names
if isinstance(v, pd.Series) or 'feature' not in v.columns:
v = v.reset_index()
v.columns = ['feature', 'score'] # Adjust column names accordingly
# Assuming 'v' now has columns ['feature', 'score']
fig = px.bar(v, y='feature', x='score', orientation='h',
title=f"Feature Importance for {model_type} ({k})",
labels={'score': 'Importance', 'feature': 'Feature'})
fig.update_layout(yaxis={'categoryorder':'total ascending'}) # Optional: This sorts the bars
st.plotly_chart(fig)
else:
st.error("Please generate and preprocess the dataset first.")
if tabs == "Economic effects":
st.header("Economic Effects Analysis")
st.write("""
We can evaluate our models by looking at the Qini curves. We can use the CATE conversion model to evaluate the performance on both the Conversion and the Benefit as a function of the fraction of users targeted.
The Qini curve is a measure of the uplift effect of a model. It shows the difference between the uplift model and a random model.
""")
if 'uplift_sim' in st.session_state and 'model_trainer' in st.session_state:
df_test = st.session_state.model_trainer.df_test
model_type = st.radio("Choose the model type for analysis", ('Conversion Model', 'Benefit Model'))
# Determine which model to use based on user selection
if model_type == 'Conversion Model':
model = st.session_state.model_trainer.conversion_learner_t
elif model_type == 'Benefit Model':
model = st.session_state.model_trainer.benefit_learner_t
else:
st.error("Invalid model type selected.")
st.stop()
if model == None:
st.error("Please train the model first.")
st.stop()
evaluator = ModelEvaluator(model,
df_test,
X_names # df_test.columns.drop(['conversion', 'benefit', 'treatment_group_key'])
)
discounts = ['discount_05', 'discount_10', 'discount_15']
qini_conversions = {}
qini_benefits = {}
for discount in discounts:
qini_conv, qini_ben = evaluator.eval_performance(discount)
qini_conversions[discount] = qini_conv
qini_benefits[discount] = qini_ben
# Plotting CATE Conversion
st.subheader("CATE Conversion vs Targeted Population")
# fig, ax_conversion = plt.subplots()
# for discount, color in zip(discounts, ['b', 'g', 'y']):
# qini_conversions[discount].plot(ax=ax_conversion, x='index', y='S', color=color)
# qini_conversions[discount].plot(ax=ax_conversion, x='index', y='Random', color='r', ls='--')
# ax_conversion.legend([f'{d} model' for d in discounts] + [f'{d} random' for d in discounts], prop={'size': 10})
# ax_conversion.set_xlabel('Fraction of Targeted Users')
# ax_conversion.set_ylabel('CATE Conversion')
# ax_conversion.set_title('CATE Conversion vs Targeted Population')
# st.pyplot(fig)
# Initialize a figure object
fig = go.Figure()
# Define colors for each discount level and the random baseline
colors = ['blue', 'green', 'yellow']
random_line_dash = 'dash'
# Iterate over each discount to add its line to the plot
for i, discount in enumerate(discounts):
# Add the model line
fig.add_trace(go.Scatter(x=qini_conversions[discount]['index'],
y=qini_conversions[discount]['S'],
mode='lines',
name=f'{discount} model',
line=dict(color=colors[i])))
# Add the random baseline line
fig.add_trace(go.Scatter(x=qini_conversions[discount]['index'],
y=qini_conversions[discount]['Random'],
mode='lines',
name=f'{discount} random',
line=dict(color='red', dash=random_line_dash)))
# Update the layout of the figure
fig.update_layout(
title='CATE Conversion vs Targeted Population',
xaxis_title='Fraction of Targeted Users',
yaxis_title='CATE Conversion',
legend_title='Legend',
legend=dict(
x=0,
y=1,
traceorder='normal',
font=dict(
size=10,
)
)
)
# Display the figure in Streamlit
st.plotly_chart(fig)
# Plotting CATE Benefit
st.subheader("CATE Benefit vs Targeted Population")
# fig, ax_benefit = plt.subplots()
# for discount, color in zip(discounts, ['b', 'g', 'y']):
# qini_benefits[discount].plot(ax=ax_benefit, x='index', y='S', color=color)
# qini_benefits[discount].plot(ax=ax_benefit, x='index', y='Random', color='r', ls='--')
# ax_benefit.legend([f'{d} model' for d in discounts] + [f'{d} random' for d in discounts], prop={'size': 10})
# ax_benefit.set_xlabel('Fraction of Targeted Users')
# ax_benefit.set_ylabel('CATE Benefit')
# ax_benefit.set_title('CATE Benefit vs Targeted Population')
# st.pyplot(fig)
# Initialize a figure object
fig = go.Figure()
# Define colors for each discount level and the random baseline
colors = ['blue', 'green', 'yellow']
random_line_dash = 'dash'
# Iterate over each discount to add its line to the plot
for i, discount in enumerate(discounts):
# Add the model line
fig.add_trace(go.Scatter(x=qini_benefits[discount]['index'],
y=qini_benefits[discount]['S'],
mode='lines',
name=f'{discount} model',
line=dict(color=colors[i])))
# Add the random baseline line
fig.add_trace(go.Scatter(x=qini_benefits[discount]['index'],
y=qini_benefits[discount]['Random'],
mode='lines',
name=f'{discount} random',
line=dict(color='red', dash=random_line_dash)))
# Update the layout of the figure
fig.update_layout(
title='CATE Benefit vs Targeted Population',
xaxis_title='Fraction of Targeted Users',
yaxis_title='CATE Benefit',
legend_title='Legend',
legend=dict(
x=0,
y=1,
traceorder='normal',
font=dict(
size=10,
)
)
)
# Display the figure in Streamlit
st.plotly_chart(fig)
# Plotting CATE Benefit vs CATE Conversion
st.subheader("CATE Benefit vs CATE Conversion")
# fig, ax_comp = plt.subplots()
# colors = ['b', 'g', 'y']
# for i, discount in enumerate(discounts):
# qini_conc_test = pd.concat([qini_conversions[discount][['S']], qini_benefits[discount][['S']]], axis=1)
# qini_conc_test.columns = ['cate_conversion', 'cate_benefit']
# qini_conc_test.plot(ax=ax_comp, x='cate_conversion', y='cate_benefit', color=colors[i], label=f'{discount} model')
# st.write('To simplify the comparison, we can plot the CATE Benefit as a function of the CATE conversion.')
# st.write('In the last plot for example we can see that there is a region where offering 15% discount to a targeted group of users is more efficient than giving 10% to everyone. We can obtain the same impact in overall conversion uplift while reducing our benefit loss considerably.')
# ax_comp.legend(prop={'size': 10})
# ax_comp.set_xlabel('CATE Conversion')
# ax_comp.set_ylabel('CATE Benefit')
# ax_comp.set_title('CATE Benefit vs CATE Conversion')
# st.pyplot(fig)
# Initialize a figure object
fig = go.Figure()
# Define colors for each discount level
colors = ['blue', 'green', 'yellow']
# Iterate over each discount to add its scatter plot to the figure
for i, discount in enumerate(discounts):
qini_conc_test = pd.concat([qini_conversions[discount]['S'], qini_benefits[discount]['S']], axis=1)
qini_conc_test.columns = ['cate_conversion', 'cate_benefit']
# Add the scatter plot for each discount level
# Adjust marker size with `size` and line width with `line=dict(width=2)`
fig.add_trace(go.Scatter(x=qini_conc_test['cate_conversion'],
y=qini_conc_test['cate_benefit'],
mode='markers+lines',
name=f'{discount} model',
marker=dict(color=colors[i], size=6), # Adjust marker size here
line=dict(width=2))) # Adjust line width here
# Update the layout of the figure to adjust aspect ratio and margins if needed
fig.update_layout(
title='CATE Benefit vs CATE Conversion',
xaxis_title='CATE Conversion',
yaxis_title='CATE Benefit',
legend_title='Legend',
legend=dict(
x=0,
y=1,
traceorder='normal',
font=dict(
size=10,
)
),
# Optionally adjust plot and margin size for a "thinner" appearance
margin=dict(l=20, r=20, t=50, b=20), # Adjust margins to change plot boundary
height=400, # Adjust height for overall "thinness"
width=600 # Adjust width as needed
)
# Display the figure in Streamlit
st.plotly_chart(fig)
st.write('To simplify the comparison, we can plot the CATE Benefit as a function of the CATE conversion.')
st.write('In the last plot for example, we can see that there is a region where offering a 15% discount to a targeted group of users is more efficient than giving 10% to everyone. We can obtain the same impact on overall conversion uplift while reducing our benefit loss considerably.')
else:
st.error("Please ensure the model is trained and the dataset is prepared.") |