Spaces:
Sleeping
Sleeping
import wandb | |
import pandas as pd | |
import os | |
def upload_dataset_to_wandb(dirs, project_name, dataset_name, dataset_type='raw_dataset'): | |
with wandb.init(project=project_name, job_type='load-data') as run: | |
dataset_artifact = wandb.Artifact(dataset_name, type=dataset_type) | |
for dir in dirs: | |
dataset_artifact.add_dir(dir) | |
run.log_artifact(dataset_artifact) | |
def eda_work_with_dataset_to_wandb(dirs, project_name, dataset_name, dataset_type, artifact_type): | |
with wandb.init(project=project_name, job_type='eda') as run: | |
dataset_artifact = run.use_artifact(dataset_name, type=dataset_type) | |
eda_artifact = wandb.Artifact('eda_result', type=artifact_type) | |
for dir in dirs: | |
eda_artifact.add_dir(dir) | |
run.log_artifact(eda_artifact) | |
run.log({ | |
"eda_result": pd.read_csv( | |
os.path.join(dirs[0], "kl_feature_importance.csv") | |
) | |
} | |
) | |
def training_results_to_wandb(dirs, project_name, dataset_name, dataset_type, artifact_type, model_name, job_type='train'): | |
with wandb.init(project=project_name, job_type=job_type) as run: | |
dataset_artifact = run.use_artifact(dataset_name, type=dataset_type) | |
model_artifact = wandb.Artifact(model_name, type=artifact_type) | |
for dir in dirs: | |
model_artifact.add_dir(dir) | |
run.log_artifact(model_artifact) | |
if job_type == 'train': | |
run.log({ | |
"discount_05_feature_importance": pd.read_csv( | |
os.path.join(dirs[0], "discount_05_feature_importance.csv") | |
), | |
"discount_10_feature_importance": pd.read_csv( | |
os.path.join(dirs[0], "discount_10_feature_importance.csv") | |
), | |
"discount_15_feature_importance": pd.read_csv( | |
os.path.join(dirs[0], "discount_15_feature_importance.csv") | |
), | |
} | |
) |