Spaces:
Sleeping
Sleeping
Commit
·
71a7fb2
1
Parent(s):
a71b7de
overview updates
Browse files
app.py
CHANGED
@@ -29,7 +29,22 @@ X_names = [
|
|
29 |
# Title
|
30 |
st.title("Uplift Modeling in Retail Demo")
|
31 |
|
32 |
-
tabs = st.sidebar.radio("Navigation", [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
if tabs == "Data generation":
|
35 |
|
|
|
29 |
# Title
|
30 |
st.title("Uplift Modeling in Retail Demo")
|
31 |
|
32 |
+
tabs = st.sidebar.radio("Navigation", [
|
33 |
+
"Overview"
|
34 |
+
"Data generation",
|
35 |
+
"Exploratory analysis",
|
36 |
+
"Model training",
|
37 |
+
"Economic effects"]
|
38 |
+
)
|
39 |
+
|
40 |
+
if tabs == "Overview":
|
41 |
+
st.header("Overview")
|
42 |
+
st.write("""
|
43 |
+
This app demonstrates the use of uplift modeling to understand the effect of different actions (like promotions) on customer behavior. We generate a simulated dataset and use it to train a model that predicts the uplift effect of different treatments on customer behavior. We then evaluate the model using the Qini curve, which measures the uplift effect of a model compared to a random model.
|
44 |
+
""")
|
45 |
+
# embed Loom video on the page
|
46 |
+
st.video("https://www.loom.com/share/57591e60cf7a44fdb8de5d7fb66808e8")
|
47 |
+
st.write("To get started, select the 'Data generation' tab from the sidebar.")
|
48 |
|
49 |
if tabs == "Data generation":
|
50 |
|