File size: 8,561 Bytes
20d05ae
 
925d97e
 
 
 
 
 
 
 
 
20d05ae
925d97e
 
db8bf7f
0cb3834
925d97e
db8bf7f
 
925d97e
 
db8bf7f
925d97e
eb3ba2e
925d97e
 
 
42cf67e
925d97e
f98d769
925d97e
db8bf7f
925d97e
db8bf7f
925d97e
 
 
 
eb3ba2e
925d97e
 
db8bf7f
925d97e
 
 
20d05ae
 
0cb3834
db8bf7f
f65d2ed
46a6192
a87192b
 
 
 
db8bf7f
a87192b
db8bf7f
 
a87192b
 
db8bf7f
 
 
a87192b
 
db8bf7f
 
 
a87192b
db8bf7f
a87192b
db8bf7f
a87192b
 
 
 
db8bf7f
a87192b
 
 
 
 
db8bf7f
0cb3834
db8bf7f
 
0cb3834
db8bf7f
a87192b
0cb3834
eb3ba2e
 
 
db8bf7f
 
eb3ba2e
 
 
 
 
db8bf7f
eb3ba2e
6f1ebe2
db8bf7f
 
 
f98d769
 
 
 
 
 
 
6f1ebe2
db8bf7f
6f1ebe2
eb3ba2e
db8bf7f
 
eb3ba2e
f98d769
eb3ba2e
db8bf7f
6f1ebe2
f98d769
6f1ebe2
f98d769
925d97e
db8bf7f
 
925d97e
 
db8bf7f
925d97e
 
db8bf7f
925d97e
 
db8bf7f
 
925d97e
 
 
db8bf7f
 
 
 
0cb3834
db8bf7f
0cb3834
db8bf7f
0cb3834
 
db8bf7f
 
 
 
 
0cb3834
db8bf7f
0cb3834
db8bf7f
0cb3834
db8bf7f
0cb3834
db8bf7f
 
 
 
 
eb3ba2e
db8bf7f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import os
from constants import VOICE_METHODS, BARK_VOICES, EDGE_VOICES
import platform
from models.model import *
from tts.conversion import COQUI_LANGUAGES
import pytube
import os
import traceback
from pydub import AudioSegment
# from audio_enhance.functions import audio_enhance

def convert_yt_to_wav(url):
    if not url:
        return "Please enter the video link first", None
    
    try:
        print(f"Converting video {url}...")
        # Download the video using pytube
        video = pytube.YouTube(url)
        stream = video.streams.filter(only_audio=True).first()
        video_output_folder = os.path.join(f"yt_videos")  # Destination folder path
        audio_output_folder = 'audios'

        print("Downloading video")
        video_file_path = stream.download(output_path=video_output_folder)
        print(video_file_path)

        file_name = os.path.basename(video_file_path)
        
        audio_file_path = os.path.join(audio_output_folder, file_name.replace('.mp4','.wav'))
        # Convert mp4 to wav
        print("Converting to wav")
        sound = AudioSegment.from_file(video_file_path, format="mp4")
        sound.export(audio_file_path, format="wav")
        
        if os.path.exists(video_file_path):
            os.remove(video_file_path)
            
        return "Success", audio_file_path
    except ConnectionResetError as cre:
        return "Connection lost, please refresh or try again later.", None
    except Exception as e:
        return str(e), None
    
with gr.Blocks() as app:
    gr.HTML("<h1> Simple RVC Inference - by Juuxn 💻 </h1>")
    
    gr.HTML("<h4> This space uses CPU only, so it's for inference only. It's recommended to duplicate the space to avoid issues with processing queues. </h4>")
    
    gr.Markdown("Simple RVC GPU Inference on colab: [![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/drive/1NKqqTR04HujeBxzwe7jbYEvNi8LbxD_N?usp=sharing)")
    gr.Markdown(
        "[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/juuxn/SimpleRVC?duplicate=true)\n\n"
    ) 
    
    gr.Markdown("Collection of models you can use: RVC + Kits ai. **[RVC Community Models](https://docs.google.com/spreadsheets/d/1owfUtQuLW9ReiIwg6U9UkkDmPOTkuNHf0OKQtWu1iaI)**")
    
    with gr.Tab("Inference"):
        model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Model URL", show_label=True)
        with gr.Row():
            with gr.Column():
                audio_path = gr.Audio(label="Audio file", show_label=True, type="filepath")
                index_rate = gr.Slider(minimum=0, maximum=1, label="Search feature ratio:", value=0.75, interactive=True)
                filter_radius1 = gr.Slider(minimum=0, maximum=7, label="Filter (reduce breath harshness)", value=3, step=1, interactive=True)
            with gr.Column():
                f0_method = gr.Dropdown(choices=["harvest", "pm", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny", "rmvpe"], 
                                        value="rmvpe", 
                                        label="Algorithm", show_label=True)
                vc_transform0 = gr.Slider(minimum=-12, label="Number of semitones, raise an octave: 12, lower an octave: -12", value=0, maximum=12, step=1)
                protect0 = gr.Slider(
                    minimum=0, maximum=0.5, label="Protect voiceless consonants and breath sounds. 0.5 to disable.", value=0.33,
                    step=0.01,
                    interactive=True,
                )
                resample_sr1 = gr.Slider(
                    minimum=0,
                    maximum=48000,
                    label="Resample output audio to the final sampling frequency. 0 to disable resampling.",
                    value=0,
                    step=1,
                    interactive=True,
                )
                 
        # Output
        with gr.Row():
            vc_output1 = gr.Textbox(label="Output")
            vc_output2 = gr.Audio(label="Output audio")
                            
        btn = gr.Button(value="Convert")
        btn.click(infer, inputs=[model_url, f0_method, audio_path, index_rate, vc_transform0, protect0, resample_sr1, filter_radius1], outputs=[vc_output1, vc_output2])
        
    with gr.TabItem("TTS"):
        with gr.Row():
            tts_text = gr.Textbox(
                label="Text:",
                placeholder="Text you want to convert to speech...",
                lines=6,
            )

        with gr.Column():
            with gr.Row():
                tts_model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="RVC Model URL", show_label=True)
                
            with gr.Row():
                tts_method = gr.Dropdown(choices=VOICE_METHODS, value="Edge-tts", label="TTS Method:", visible=True)
                tts_model = gr.Dropdown(choices=EDGE_VOICES, label="TTS Model:", visible=True, interactive=True)
                tts_api_key = gr.Textbox(label="ElevenLabs API key", show_label=True, placeholder="4a4afce72349680c8e8b6fdcfaf2b65a",interactive=True, visible=False)
            
            tts_coqui_languages = gr.Radio(
                label="Language",
                choices=COQUI_LANGUAGES,
                value="en",
                visible=False
            )
            
            tts_btn = gr.Button(value="Convert")
                
            with gr.Row():
                tts_vc_output1 = gr.Textbox(label="Output")
                tts_vc_output2 = gr.Audio(label="Output audio")   
            
        tts_btn.click(fn=tts_infer, inputs=[tts_text, tts_model_url, tts_method, tts_model, tts_api_key, tts_coqui_languages], outputs=[tts_vc_output1, tts_vc_output2])
        
        tts_msg = gr.Markdown("""**I recommend creating an Eleven Labs account and adding your API key. It’s free, and you get a 10k character limit per month.** <br/>
                ![Imgur](https://imgur.com/HH6YTu0.png)
                """, visible=False)
        
        tts_method.change(fn=update_tts_methods_voice, inputs=[tts_method], outputs=[tts_model, tts_msg, tts_api_key, tts_coqui_languages])
    
    with gr.TabItem("YouTube"):
        gr.Markdown("## Convert YouTube video to audio")
        with gr.Row():
            yt_url = gr.Textbox(
                label="Video URL:",
                placeholder="https://www.youtube.com/watch?v=3vEiqil5d3Q"
            )
        yt_btn = gr.Button(value="Convert")
                
        with gr.Row():
            yt_output1 = gr.Textbox(label="Output")
            yt_output2 = gr.Audio(label="Output audio")   
            
        yt_btn.click(fn=convert_yt_to_wav, inputs=[yt_url], outputs=[yt_output1, yt_output2])
         
    with gr.Tab("Models"):
        gr.HTML("<h4>Search Models</h4>")
        search_name = gr.Textbox(placeholder="Billie Eillish (RVC v2 - 100 epoch)", label="Name", show_label=True)
         # Output
        with gr.Row():
            sarch_output = gr.Markdown(label="Output")
            
        btn_search_model = gr.Button(value="Search")
        btn_search_model.click(fn=search_model, inputs=[search_name], outputs=[sarch_output])
        
        gr.HTML("<h4>Publish Your Model</h4>")
        post_name = gr.Textbox(placeholder="Billie Eillish (RVC v2 - 100 epoch)", label="Name", show_label=True)
        post_model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Model URL", show_label=True)
        post_creator = gr.Textbox(placeholder="Discord ID or creator profile link", label="Creator", show_label=True)
        post_version = gr.Dropdown(choices=["RVC v1", "RVC v2"], value="RVC v1", label="Version", show_label=True)
        
         # Output
        with gr.Row():
            post_output = gr.Markdown(label="Output")
            
        btn_post_model = gr.Button(value="Publish")
        btn_post_model.click(fn=post_model, inputs=[post_name, post_model_url, post_version, post_creator], outputs=[post_output])
        
        
    gr.Markdown(
        """For commercial use of the models and spaces, consider purchasing a license, or negotiate one with the voice creators."""
    )

if __name__ == "__main__":
    app.queue().launch(debug=True)